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Abstract

Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to 

understand mechanisms underpinning gene regulation and disease. Here we describe results of 

DNA methylation-quantitative trait locus (mQTL) analyses on 32,851 participants, identifying 

genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of 

>270,000 independent mQTLs of which 8.5% comprise long-range (trans) associations. Identified 

mQTL associations explain 15-17% of the additive genetic variance of DNAm. We show that the 

genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between 

distal DNAm sites we construct networks, identifying 405 discrete genomic communities enriched 

for genomic annotations and complex traits. Shared genetic variants are associated with both 

DNAm levels and complex diseases but only in a minority of cases do these associations reflect 

causal relationships from DNAm to trait or vice versa, indicating a more complex genotype-

phenotype map than previously anticipated.
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The role of common inter-individual variation in DNAm on disease mechanisms is 

not yet well characterized. It has, however, been hypothesized that DNAm serves as 

a viable biomarker for risk stratification, early disease detection and the prediction of 

disease prognosis and progression.1 Because genetic influences on DNAm in blood are 

widespread2–4, a powerful avenue for studying the functional consequences of differences 

in DNAm levels is to map genetic differences associated with population-level variation, 

identifying mQTLs that include both local (cis-mQTL) and distal (trans-mQTL) effects. 

We can harness mQTLs as natural experiments, allowing us to observe randomly perturbed 

DNAm levels in a manner that is not confounded with environmental factors5,6. In this 

regard, mapping even very small genetic effects on DNAm is valuable for gaining power to 

evaluate whether its variation has a substantial causal role in disease and other biological 

processes.

To date, only a small fraction of the total genetic variation estimated to influence DNAm 

across the genome has been identified7, and the proportion of trans heritability explained 

by trans-mQTLs (defined as variants >1Mb from the DNAm site) is much smaller than the 

proportion of cis heritability explained by cis-mQTLs. Therefore, the majority of genetic 

effects are likely to act in trans, with small effect sizes5,7–9, while being potentially 

biologically informative.8,10 Much larger sample sizes are required to map associations 

involving small genetic effects in order to permit greater understanding of the genetic 

architecture and the biological processes underlying DNAm7. To this end, we established 

the Genetics of DNA Methylation Consortium (GoDMC), an international collaboration of 

human epidemiological studies that comprises >30,000 study participants with genetic and 

DNAm data.

We use this resource to develop a comprehensive catalogue of cis- and trans-mQTLs, which 

enables us to examine the genetic architecture of DNAm. By constructing networks of 

multiple cis- and trans-mQTLs, we learn about their collective impact on pathways and 

complex traits. Finally, we interrogate the potential role of DNAm in disease mechanisms 

by mapping the causal relationships between variable DNAm and 116 complex traits and 

diseases in a bi-directional manner. A database of our results is available as a resource to the 

community at http://mqtldb.godmc.org.uk/.

Results

Genetic variants influence 45% of tested DNAm sites

In order to map genetic influences on DNAm, we established an analysis workflow that 

enabled standardized meta-analysis and data integration across 36 population-based and 

disease datasets. Using a two-phase discovery study design, we analyzed ~10 million 

genotypes imputed to the 1000 Genomes Project reference panel11 and quantified DNAm 

at 420,509 sites using Illumina HumanMethylation BeadChips in whole blood derived from 

27,750 European participants (Figure 1a, Supplementary Figures 1-4, Extended Data Fig. 

1, Supplementary Tables 1-2, Supplementary Note). The microarray technology used in the 

majority of cohorts limited us to the analysis of only 1.5% of the ~28M DNAm sites across 

the genome12, including 96% of CpG islands and CpG shores and 99% of RefSeq genes13 

and all inferences relate only to these sites.
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Using linkage disequilibrium (LD) clumping, we identified 248,607 independent cis-mQTL 

associations (p<1e-8, <1Mb from the DNAm site, Supplementary Figure 3) with a median 

distance between single nucleotide polymorphisms (SNP) and DNAm sites of 36kb 

(interquartile range (IQR)=118 kb, Extended Data Fig. 2). We found 23,117 independent 

trans-mQTL associations (using a conservative threshold of p<1e-147, Supplementary 

Figure 3, Supplementary Note). These mQTLs involved 190,102 DNAm sites, representing 

45.2% of all those tested (Figure 1b) which is a 1.9x increase of sites with a cis association 

(p<1e-8) and 10x increase of sites with a trans association (p<1e-14) over a previous study 

whose sample size was 7x smaller8. As expected, mQTL effect sizes for each DNAm site 

(the maximum absolute additive change in DNAm level measured in standard deviation (SD) 

per allele) were lower for sites with a trans association (as compared to sites with a cis 
association (per allele SD change = -0.02 (s.e.=0.002, p=2.1e-14, Extended Data Fig. 3). The 

differential improvement in yield between cis and trans associations is revealing in terms of 

the genetic architecture – relatively small sample sizes are sufficient to uncover the majority 

of large cis effects, whereas much larger sample sizes are required to identify the polygenic 

trans component.

The majority of trans associations (80%) were inter-chromosomal. Of the intra-

chromosomal trans associations, 34% were >5 Mb from the DNAm site, Extended Data 

Fig. 2a). We found a substantially lower number of inter-chromosomal trans associations 

per 5 Mb region (1.59) than intra-chromosomal associations (>1 Mb: 7.95; >6 Mb 4.81, 

excluding chromosome 6).

Next, using conditional analysis14 we explored the potential for multiple independent 

SNPs operating within the locus of each mQTL, identifying 758,130 putative independent 

variants. Each DNAm site, for which a mQTL in cis had been detected, had a median 

of 2 independent variants (IQR=4 variants, Supplementary Figure 5). For all subsequent 

analyses, we used index SNPs from clumping procedures to be conservative and unbiased 

due to the non-independence of genetic variants.

We sought to replicate the mQTLs in the Generation Scotland cohort (n=5,101) using an 

independent analysis pipeline. Replication data were available for 188,017 of our discovery 

mQTLs (137,709 sites). We found a strong correlation of effect sizes for both cis and trans 
effects (Pearson r=0.97, n=155,191 and 0.96, n=14,465 at p<1e-3, respectively; Figure 1c); 

99.6% of the associations had a consistent direction of effect (Supplementary Note). At a 

Bonferroni corrected threshold of 0.05/188,017, 142,727 of the discovery mQTLs replicated 

in the Generation Scotland cohort (76%); the replication rates for cis- and trans-mQTLs 

were 76% and 79%, respectively. To evaluate whether our replication rate was in line 

with expectations given the smaller replication sample size, we estimated that under the 

assumption that the discovery mQTLs are true positives, 171,824 mQTLs would be expected 

to replicate at a nominal threshold of p<1e-3; we found that the actual number of mQTLs 

replicating at this level was 169,656, indicating that the majority of our discovery mQTLs 

are likely to be true positives (Supplementary Data 1, Supplementary Note). Our findings 

indicate that there is little between-study heterogeneity in our analysis and that genetic 

effects on DNAm are relatively stable across samples of European ancestry (Extended Data 

Fig. 1, Supplementary Table 2).

Min et al. Page 3

Nat Genet. Author manuscript; available in PMC 2022 March 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Overall, the variance explained by replicated genetic effects on DNAm was small. For 

99% of the associations in cis and trans, mQTLs explained less than 21% and 16% of the 

variation in DNAm respectively (Supplementary Figure 6). Aggregating across all 420,509 

tested DNAm sites, our replicated mQTL associations explain 1.3% of the total assayed 

variation in DNAm, 8% of this being due to trans associations. Restricting to sites that have 

at least one cis effect or trans effect, however, we explain 4.2% and 2.5% of the DNAm 

variance, respectively.

We then investigated how much of the heritability of variable DNAm can be explained 

by our mQTL associations using family-based heritability studies of DNAm2,15. We found 

a strong positive relationship between variance explained by replication mQTL estimates 

(127,680 sites in Generation Scotland) and heritability for both studies (family: Pearson 

r=0.41 across 121,582 available sites; twin: Pearson r=0.37 across 118,955 available sites) 

(Figure 1d, Supplementary Data 2). The mQTLs that we identified explain 15%-17% of 

the additive genetic variance of DNAm (Supplementary Figure 7). Finally, there were 

strong positive relationships between the heritability of DNAm levels at a DNAm site 

and the number of independent mQTLs (Supplementary Figure 8), heritability and effect 

size (Supplementary Figure 9), variance explained and the number of independent mQTLs 

(Supplementary Figure 10) and variance explained and distribution of DNAm levels 

(Supplementary Figure 11). Overall, our results support a mixed genetic architecture of 

polygenic genome-wide effects and larger cis effects.

Our mQTL coverage was limited by the computational necessity of a multiple-stage study 

design (Extended Data Fig. 4a). The discovered mQTLs with r2<1% are likely a small 

fraction of all the mQTLs in this category expected to exist. Across these DNAm sites, and 

within the range of mQTLs detected in our study (r2>0.22%) we estimate that there are 

twice as many cis-mQTLs and 22.5 times more trans-mQTLs yet to discover (Extended Data 

Fig. 4b). This would likely not explain all estimated heritability, indicating that a substantial 

set of the heritability is due to causal variants with smaller effects or due to rare variants.

Cis- and trans-mQTLs operate through distinct mechanisms

To infer biological properties of trans features that were independent of any incidental 

cis effects7,8,16–18, we categorized mQTLs into those only associated with DNAm in cis 
(n=157,095, 69.9%), those only associated with DNAm in trans (n=794, 0.35%), and those 

associated with DNAm in both cis and trans (n=66,759, 29.7%). Similarly, of the 190,102 

DNAm sites influenced by a SNP, 170,986 DNAm sites (89.9%) were cis only, 11,902 

DNAm sites (6.3%) were cis+trans, and 7,214 DNAm sites (3.8%) were trans only.

We first compared the distributions of DNAm levels (weighted mean DNAm level across 

36 studies (Figure 1b). We then performed enrichment analyses on the mQTL SNPs 

and DNAm sites using 25 combinatorial chromatin states from 127 cell types19 and 

gene annotations (Figure 2a, Supplementary Figures 12-15, Supplementary Tables 3-6). 

Consistent with previous studies7,8,18, we found that cis only sites are represented in high 

(32%), low (28%) and intermediate (40%) DNAm levels, and these sites are mainly enriched 

for enhancer chromatin states (mean odds ratio (OR) =1.37), CpG islands (OR=1.25) 

and shores (OR=1.26). For cis+trans sites, we found that the majority of these sites 
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(66%) have intermediate DNAm levels. By replicating this finding in two isolated white-

blood-cell subsets (Supplementary Figure 16), we showed that this is due to cell-to-cell 

variability19,20 or subcell-type differences. In line with the observation that intermediate 

levels of DNAm are found at distal regulatory sequences21,22, these cis+trans sites were 

enriched for enhancer (mean OR=1.65) and promoter states (mean OR=1.41). However, for 

trans only sites, we found a pattern of low DNAm (for 55% of sites) and enrichments for 

promoter states (mean OR=1.39) especially TssA (active transcription start site) promoter 

state (mean OR=2.03). These enrichment patterns were consistent if we restricted to only 

inter-chromosomal associations (Supplementary Note, Supplementary Figure 17).

Analyzing the differences in properties for the SNP categories, we found that cis only and 

cis+trans SNPs were enriched for active chromatin states and genic regions whereas trans 
only SNPs were enriched for intergenic regions and the heterochromatin state (Figure 2a, 

Supplementary Figures 14-15, Supplementary Tables 5-6).

Overall, these results highlight that a complex relationship between molecular features 

is underlying the mQTL categories and the biological contexts are substantially different 

between cis and trans features.

We found that these inferences were often shared across other tissues. DNAm sites with low 

or intermediate DNAm levels have similar DNAm distributions in 12 tissues (Supplementary 

Figures 18-20) with stronger enrichments in blood datasets for the enhancer states indicating 

some level of tissue specificity for mQTLs in these regions (Supplementary Figures 12, 14, 

21).

To investigate whether mQTLs are tissue specific, we compared the correlation of effect 

estimates of cis- and trans-mQTLs in blood against adipose tissue (n=603)23 and brain 

(n=170)9 (Supplementary Note, Extended Data Fig. 5). We found a larger extent of QTL 

sharing of blood and adipose tissue as compared to blood and brain which might be 

explained by shared cell types, in line with cis expression QTL findings24. Generally, 

the between tissue effect correlations were high, consistent with a recent comparison of cis-

mQTL effects between brain and blood25. However, we found that the highest correlations 

were for associations involving trans-only sites (Adipose rb=0.92 (se =0.004); Brain rb=0.88 

(se=0.009)) despite having on average smaller effect sizes than cis only associations, 

implying that they are less tissue specific than cis effects (Adipose rb=0.73 (se =0.002); 

Brain rb=0.59 (se=0.004)), which is in line with the notion that DNAm of promoters is 

less tissue specific. Stratifying the mQTL categories to low, intermediate and high DNAm, 

showed that the brain-blood correlations are the lowest for intermediate DNAm categories 

and adipose-blood correlations are lowest for high DNAm categories, which may suggest 

cellular heterogeneity for high DNAm levels (Extended Data Fig. 5). These results show the 

value of large sample sizes in blood to detect trans-mQTLs regardless of the tissue.

Trans-mQTL SNPs and DNAm exhibit patterned TF binding

Recent studies have uncovered multiple types of transcription factor (TFs)/DNA interactions 

influenced by DNAm including the binding of DNAm-sensitive TFs26–28 and cooperativity 

between TFs27,29. To gain insights into how SNPs induce long-range DNAm changes, we 
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mapped enrichments for DNAm sites and SNPs across binding sites for 171 TFs in 27 cell 

types30,31. We found strong enrichments for the majority of TFs and cell types amongst 

DNAm sites with a trans association (cis+trans: 55%; trans only: 80%; cis only: 18%) 

and amongst cis-acting SNPs (cis only: 96%, cis+trans: 91%, trans only: 1%) (Figure 2b, 

Supplementary Tables 7-8, Supplementary Figures 22-23). Consistent with the observation 

that trans only DNAm sites are enriched for CpG islands (Supplementary Figure 13), DNAm 

sites that overlap transcription factor binding sites (TFBSs) were relatively hypomethylated 

(weighted mean DNAm levels = 21% vs 52%, p<2.2e-16) (Supplementary Figure 24).

Next we hypothesized that if a trans-mQTL is driven by TF activity8,10 then particular TF-

TF pairs may exhibit preferential enrichment32. A mQTL has a pair of TFBS annotations31, 

one for the SNP and one for the DNAm site. We evaluated if the annotation pairs amongst 

18,584 inter-chromosomal trans-mQTLs were associated to TF binding in a non-random 

pattern (Supplementary Note, Extended Data Fig. 6a-b). We found that 6.1% (22,962 of 

378,225) of possible pairwise combinations of SNP-DNAm site annotations were more 

over- or under-represented than expected by chance after strict multiple testing correction 

(Supplementary Note, Supplementary Table 9, Extended Data Fig. 6c).

After accounting for abundance and other characteristics, the strongest pairwise enrichments 

involved sites close to TFBSs for proteins in the cohesin complex, for example CTCF, 

SMC3 and RAD21, as well as TFs such as GATA2 related to cohesin33. Bipartite analysis 

showed that these clustered due to being related to similar sets of SNP annotations 

(Extended Data Fig. 6d). Other clusters were also found; for example, sites close to 

TFBSs for interferon regulatory factor 1 (IRF1), a gene for which trans-acting regulatory 

networks34, and enrichment amongst causally interacting chromatin accessibility QTLs35 

have been previously reported were more likely to be influenced by SNPs near TFBSs for 

EZH2, SMC3, ATF3, BCL3, TR4 and MAX.

Next, we compared the locations of inter-chromosomal trans-mQTLs (n=18,584) to known 

regions of chromatin interactions36 as alternative mechanism for trans coordination8,37. We 

found 1,175 overlaps for 637 SNP-DNAm site pairs (3.4%) where the LD region of the 

mQTL SNP and the corresponding site overlapped with any interacting regions (525 SNPs, 

602 sites) as compared to a mean of 473 SNP-DNAm site pairs in 1,000 permuted datasets 

(OR=1.36, pFisher=6.5e-7, pempirical<1e-3) (Supplementary Figure 25). To summarize, our 

results show that trans-mQTLs are in part driven by long-range cooperative TF interactions 

and, that for a small proportion of inter-chromosomal trans-mQTLs the spatial distance in 
vivo is likely to be small.

Trans-mQTL effects form DNAm communities

Genetic variation can perturb chromatin activity32,35,37, DNAm8 or gene expression38 across 

multiple sites in cis and trans revealing coordinated activity between regulatory elements 

and genes. We observed that there were 1,728,873 instances where a SNP acting in trans 
also associated with a cis DNAm site (before LD pruning). Genetic colocalization analysis 

indicated that 278,051 of these instances were due to the cis and trans sites sharing a genetic 

factor, representing 3,573 independent cis-trans genomic region pairs, of which 3,270 

were inter-chromosomal (Supplementary Table 10, see Supplementary Note for sensitivity 
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analysis for the colocalization method used in the context of the two-stage mQTL discovery 

design). These pairs consisted of 1,755 independent SNPs and 5,109 independent DNAm 

sites across the genome, indicating that some sites with cis associations shared genetic 

factors with multiple sites with trans associations, revealing distal coordination between 

mQTLs. From the cis-trans pairs we constructed a network linking these genomic regions 

which elucidated 405 “communities” of genomic regions that were substantially connected 

(Supplementary Note). Fifty-six of these communities comprised 10 or more sites, and the 

largest community comprised 253 sites (Figure 3a).

We hypothesized that cis sites were causally influencing multiple trans sites within their 

communities. We evaluated whether the estimated causal effect (obtained from the trans-

mQTL effect divided by the cis-mQTL effect, i.e. the Wald ratio) of the cis site on the trans 
site was consistent with the observational correlation between the cis site and the trans site. 

While there was an association, the relationship was weak (Pearson r=0.096, p=1.73e-6, 

Supplementary Figure 26), indicating that changes in cis sites causing changes in trans sites 

are probably not the predominant mechanism. We did observe that the cis-trans DNAm 

levels were more strongly correlated than we would expect by chance (Supplementary 

Figure 27), suggesting that they are jointly regulated without generally being causally 

related.

Next, we evaluated if DNAm sites within each community were enriched for regulatory 

annotations and/or gene ontologies (Supplementary Tables 11-14, Supplementary Figures 

28-29). Multiple communities showed enrichments (false discovery rate (FDR) <0.001); 

community 9 DNAm sites were strongly enriched for TFBS annotations relating to the 

cohesin complex in multiple cell types, community 22 DNAm sites were enriched for NFKB 

and EBF1 in B lymphocytes and community 76 DNAm sites were enriched for EZH2 and 

SUZ12 and bivalent promotor and repressed polycomb states (Figure 3b). Community 2 

(comprising 253 sites) was enriched for active enhancer state in three cell types and for 

lymphocyte activation (GO:0046649 FDR = 0.016) and multiple KEGG pathways including 

the JAK-STAT signalling pathway (I04630: FDR =8.53e-7) (Supplementary Tables 13, 14).

Regulatory features within a network may share a set of biological features that are related 

to complex traits. We performed enrichment analysis to evaluate if the loci tagged by DNAm 

sites in a community were related to each of 133 complex traits (Supplementary Table 15), 

accounting for non-random genomic properties of the selected loci. Restricting the analysis 

to only the 56 communities with ten or more sites, we found eleven communities that tagged 

genomic loci that were enriched for small p-values with 22 complex traits (FDR<0.05) 

(Figure 3c, Supplementary Table 16). Blood-related phenotypes were overrepresented (11 

out of 23 enrichments being related to metal levels or hematological measures, binomial 

test p-value = 4.2e-5). Amongst the communities enriched for genome-wide association 

study (GWAS) signals, community 16 was highly associated with iron and hemoglobin 

traits. Community 9 was associated to plasma cortisol (p=8.27e-5). Finally, we performed 

enrichment analysis on 36 blood cell count traits39. We found that community 16 was 

enriched for hematocrit (p=4.34e-10) and hemoglobin concentration (p=1.99e-8) and 

community 5 was enriched for reticulocyte traits (p=1.67e-6) (Supplementary Figure 30). 

The enrichments found for these DNAm communities indicate that a potentially valuable 
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utility of mapping trans-mQTLs is to indicate how distal regions of the genome are 

functionally related.

DNAm and complex traits share genetic factors

The majority of GWA loci map to non-coding regions40 and cis-mQTLs are enriched 

amongst GWAs17,41,42. Here we investigated the value of the large number of mQTLs 

especially trans-mQTLs to annotate the functional consequences of GWA loci. We first 

compared distributions of enrichment of cis and trans-mQTL categories among 41 complex 

traits. After accounting for non-random genomic distribution of mQTLs43 and multiple 

testing, we identified enrichments for 35% of the complex traits, particularly for studies 

with a larger number of GWA signals (Supplementary Figure 31, Supplementary Table 17, 

Supplementary Note). The distribution of enrichment effect estimates (ORs) of trans-mQTLs 

was substantially closer to the null or in depletion when compared to mQTLs that included 

cis effects (Figure 2c). These enrichments correspond to the results reported earlier, in which 

trans-SNPs were typically depleted for enhancer and promoter regions, whereas complex 

trait loci are enriched for coding and regulatory regions44.

Though the mQTL discovery pipeline adjusted for predicted cell types45,46 and non-

genetic DNAm principal components (PCs), there is a possibility that residual cell type 

heterogeneity remains. We performed another set of GWAS enrichment analysis, this time 

using 36 blood cell traits39, and found enrichments. These were strongest amongst cis+trans 
mQTLs, as seen in the previous enrichments (Supplementary Figure 32). For 98.9-100% of 

the mQTLs, mQTL SNPs explained more variation in DNAm than they explain variation 

in blood cell counts, suggesting a causal chain of mQTL to blood trait47. Alternatively, a 

systematic measurement error difference could explain these observations, where DNAm 

captures blood cell counts more accurately than conventional measures.

We next searched for instances of specific DNAm sites sharing the same genetic factors 

against each of 116 complex traits and diseases, and initially found 23,139 instances of an 

mQTL strongly associating with a complex trait (Figure 4). To evaluate the extent to which 

these were due to shared genetic factors (and not, for example, LD between independent 

causal variants), we performed genetic colocalization analysis48 (Supplementary Tables 15, 

18). Excluding genetic variants in the MHC region, we found 1,373 potential examples in 

which at least one DNAm site putatively shared a genetic factor with at least one of 71 traits 

(including 19 diseases). Those DNAm sites that had a shared genetic factor with a trait were 

6.9 times more likely to be present in a community compared to any other DNAm site with 

a known mQTL (Fisher’s exact test 95% CI 4.8-9.7, p=9.2e-19). Next, we evaluated how 

often the DNAm site that colocalized with a known GWAS hit was the closest DNAm site 

to the lead GWAS variant by physical distance. Notably, in only 18.1% of the cases where a 

GWAS signal and an assayed 450k DNAm site colocalized, was that DNAm site the closest 

DNAm site to the signal. This finding is similar to results found for gene expression49, but 

the converse has been found for protein levels50.

It has previously been difficult to conclude whether genetic colocalization between DNAm 

and complex traits indicates a) a causal relationship where the DNAm level is on the 

pathway from genetic variant to trait (vertical pleiotropy) or b) a non-causal relationship 
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where the variant influences the trait and DNAm independently through different pathways 

(horizontal pleiotropy)51. In Mendelian randomization (MR) it is reasoned that under a 

causal model, multiple independent genetic variants influencing DNAm should exhibit 

consistent causal effects on the complex trait52. Amongst the putative colocalizing signals, 

440 (32%) involved a DNAm site that had at least one other independent mQTL. We cannot 

determine with certainty the causal relationship of any specific site with a trait. To test if 

there was a general trend of DNAm sites causally influencing a trait we evaluated if the 

MR effect estimate based on the colocalizing signals were consistent with those obtained 

based on the secondary signals. There were substantially more large genetic effects of the 

secondary mQTLs on respective traits than expected by chance (70 with p<0.05, binomial 

test p=2.4e-16). However only 41 (59%) of these had effect estimates in the same direction 

as the primary colocalizing variant, which is not substantially better than chance (binomial 

test p=0.19). Of the 41 mQTLs, twelve were located in the HLA region. Of the remaining 

mQTLs, 27 were associated with anthropometric (ESR1 and birth weight), immune response 

(IRF5 and systemic lupus erythematosus) and lipid traits (TBL2 and triglycerides). We then 

performed systematic colocalization analysis of all mQTLs against 36 blood cell traits39. 

Here we discovered 94,738 instances of a DNAm site and a blood cell trait sharing a causal 

variant. In 28,138 instances the colocalizing DNAm site had an independent secondary 

mQTL, and with these associations we again tested for a general trend of DNAm sites 

causally influencing the blood trait. The association between independent signals was very 

weak (R2 = 0.008). Together, across the sites that were analyzable in this manner, these 

results indicate that those blood-measured DNAm sites that have shared genetic factors 

with traits cannot be typically thought of as mediating the genetic association to the trait 

(Extended Data Fig. 7, Supplementary Table 19). Instead, if DNAm is a co-regulatory 

phenomenon then the colocalizing signals between DNAm sites and complex traits may be 

due to a common cause, for example genetic variants primarily acting on TF binding.8,10

The influence of traits on DNAm variation

Previous studies have not been adequately powered to estimate the causal influences 

of complex traits on DNAm variation through MR, as the sample size of the outcome 

variable (DNAm) is a predominant factor in statistical power48,53. We systematically 

analyzed 109 traits for causal effects on DNAm using two-sample MR54,55, where each 

trait was instrumented using SNPs obtained from their respective previously published 

GWAS (Supplementary Note, Supplementary Table 15). Included amongst the traits were 35 

disease traits, which when used as exposure variables in MR must be interpreted in terms 

of the influence of liability rather than presence/absence of disease. The sample size used to 

estimate SNP effects in DNAm was up to 27,750 (Figure 4).

We initially identified 4,785 associations where risk factors or genetic liability to disease 

influences DNAm levels (multiple testing threshold p<1.4e-7). However, causal inference 

on omic variables can lead to false positives due to violations in the MR assumptions. 

We developed a filtering process involving a novel causal inference method to help protect 

against these invalid associations (Supplementary Note, Supplementary Figure 33). This left 

85 associations (involving 84 DNAm sites) in which DNAm sites were putatively influenced 

by 13 traits (nine risk factors or four diseases) (Supplementary Table 20). Further filtering 
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that would exclude traits that were predominantly instrumented by variants in the HLA 
region or driven by one SNP would reduce the total number of associations substantially 

from 84 to 19. We replicated five associations for triglycerides influencing DNAm sites near 

CPTA1 and ABCG1 56 and found associations for transferrin saturation/iron influencing 

DNAm sites near HFE.

We next evaluated if there was evidence for small, widespread changes in DNAm levels 

in response to complex trait variation, by calculating the genomic control inflation factor 

(GCin) for the p-values obtained from the MR analyses of each trait against all DNAm sites. 

Five traits (fasting glucose, age at menarche, cigarettes smoked per day, immunoglobulin 

G index levels, serum creatinine), showed GCin values above 1.05 (Extended Data Fig. 8). 

GCin calculations were performed at each chromosome singly for each trait (Supplementary 

Figure 34) and in a leave-one-chromosome-out analysis (Supplementary Figure 35). The 

GCin remained consistent (except for immunoglobulin G index levels), indicating that the 

traits have small but widespread influences on DNAm levels across the genome.

While most of the traits (n=105, 96%) tested did not appear to induce genome-wide 

enrichment this does not rule out the possibility that they have many localized small effects. 

For example, the smallest MR p-value for the analysis of body mass index on DNAm levels 

was 2.27e-6, which did not withstand genome-wide multiple testing correction, and GCin 

was 0.95. However, restricting GCin to 187 sites known to associate with body mass index 

from a previous epigenome-wide association study (EWAS)20 indicated a strong enrichment 

of low p-values (median GCin = 3.95). A similar pattern was found for triglycerides, 

in which genome-wide median GCin = 0.94 but the 10 sites known to associate with 

triglycerides from a previous EWAS57 had an MR p-value of 8.3e-70 (Fisher’s combined 

probability test). These results indicate that traits causally influencing DNAm levels in blood 

is the most likely mechanism that gives rise to these EWAS hits. It also indicates that the 

general finding that there were very few filtered putative causal effects of risk factors or 

genetic liability to disease on DNAm could be due to true positives being generally very 

small, even to the extent that our sample size of up to 27,750 individuals was insufficient to 

find them.

Discussion

A map of hundreds of thousands of genetic associations has enabled novel biological 

insights related to DNAm variation. Using a rigorous analytical framework enabled us 

to minimize heterogeneity and expand sample sizes for large omic data. This revealed 

a genetic architecture of DNAm that is polygenic. Given the diverse ranges of age, sex 

proportions and geographical origins between the cohorts in this analysis, the minimal extent 

of heterogeneity across datasets indicates that genetic effects on DNAm are relatively stable 

across contexts, at least when restricted to European ancestries. We show that cis- and 

trans-mQTLs operate through distinct mechanisms, as their genomic properties are distinct. 

A driver of long-range associations may be co-regulated through TF binding and nuclear 

organization.
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Though we found substantial sharing of genetic signals between DNAm sites and complex 

traits, we were able to demonstrate that this was not predominantly due to DNAm variation 

being on the causal path from genotype to phenotype. While our results were restricted to 

1.5% of the DNAm sites in the genome and are limited by the two-phase design, these 

findings have several implications, especially in the context of EWASs that are often based 

on the same tissue and DNAm array. First, we anticipate that some previously reported 

EWAS associations are likely due to reverse causation e.g. the risk factor or genetic liability 

to disease state itself alters DNAm and not vice versa, or confounding. Second, the genetic 

effects on DNAm that overlap with complex traits likely primarily influence other regulatory 

factors which in turn influence complex traits and DNAm through diverging pathways. 

Third, DNAm might be on the causal pathway in a disease-relevant cell type or context. 

Fourth, if the path from genotype to complex trait is non-linear, for example involving 

the statistical interactions between different regulatory features16, then our results indicate 

that large individual-level multi-omic datasets will be required to dissect such mechanisms. 

Higher density DNAm microarrays12 or low-cost sequencing technologies58 will expedite 

detailed interrogations of enhancer and other regulatory regions. Given our projection of 

mQTL yields expected for future studies, pleiotropy involving mQTLs is likely to be 

increasingly important to model when interpreting genotype-trait pathways.

Overall, our data and results present a comprehensive atlas of genetic effects on DNA 

methylation. We expect that this atlas will be of use to the scientific community for studies 

of genome regulation and for causality analysis, and that it will contribute to the control of 

confounding in EWASs.

Online Methods

Study design overview

Initially, 38 independent studies were recruited to contribute data towards a mQTL meta-

analysis of which 36 studies (Supplementary Table 1, Supplementary Note) passed our 

stringent quality criteria described below. Conventional GWAS meta-analyses involve 

performing complete GWAS in each study, sharing the summary data and meta-analyzing 

every tested SNP. As a mQTL analysis involves ~450,000 GWAS analyses, it is difficult to 

store and share the complete summary data from 38 studies. To circumvent this problem, 

each study performed GWAS analyses but provided only the associations that surpass a 

relaxed significance threshold (p<1e-5) in their study. Due to sampling variation the exact 

mQTL associations reported would differ between studies, meaning that the number of 

studies contributing to the meta-analysis would be highly variable and could be as low as 

two studies. This would introduce two problems. First, publication bias arises if it is in fact 

a null association because the studies demonstrating null effects would not contribute to 

counteract the inflated effects from those that do happen to surpass the threshold. Second, 

the precision of the effect estimate is limited by the number of studies that happen to 

contribute data on that association. To mitigate both problems the analysis in this study has 

been performed in two phases.

In phase 1 of our study we performed mQTL analyses of 420,509 high quality DNAm 

sites59 using data from 22 independent European studies to identify putative associations 
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(Supplementary Table 1, Figure 1a) at a threshold of p<1e-5. We used two approaches to 

exclude DNAm sites from our analyses. First we excluded 50,186 DNAm sites that were 

masked by Zhou et al.59 which includes probes with potential cross-reaction and probes 

that could not be mapped to genome. Secondly, we removed an additional 14,882 probes 

including multi-mapping probes (bisulfite converted sequences allowing two mismatches at 

any position mapped to the hg19 primary assembly) and probes with variants (minor allele 

frequency (MAF) >5%, UK10K) at the CpG dinucleotide or the extension base (for type I 

probes).

All candidate mQTL associations at p<1e-5 were combined to create a unique ‘candidate 

list’ of mQTL associations. In total we identified 102,965,711 candidate mQTL associations 

in cis (p<1e-5, +/-1 Mb from DNAm site) and 710,638,230 candidate mQTL associations 

in trans (>1Mb from DNAm site) in at least one dataset. 59% of the candidate mQTL 

associations in cis (n=61,103,065) and 2.4% of the associations in trans (n=17,246,702) 

were found in at least two datasets (Supplementary Figure 1). To reduce the computational 

burden, we included cis associations found in at least one dataset and trans associations in 

at least two datasets. The candidate list (n=120,212,413) was then sent back to all studies, 

and the association estimates were obtained for every mQTL association on the candidate 

list. In phase 2 of our study, we performed association tests for each of the candidate 

mQTL associations in 20 studies from phase 1 and 16 additional studies with European 

ancestry (total n=27,750) (Supplementary Table 1). The estimates for the candidate list were 

meta-analyzed to obtain the final results (Figure 1a).

This two-phase approach had a single objective: to minimize the computational burdens 

of storing summary data from the complete analysis from every study. However, we have 

effectively performed a complete search of all candidate mQTL associations, though with 

likely loss of coverage. The significant results obtained from the meta-analysis are identical 

to what would have been identified had we performed a meta-analysis on every candidate 

mQTL association. The only difference between a complete scan and our scan was that 

we would have missed some associations that were not at p<1e-5 in any study but when 

combined across all studies would have surpassed an experiment wide multiple testing 

correction.

Data preparation

Participants—To study the relationship between common genetic variation and 

DNAm, we focused on studies of European ancestry with genotype data imputed 

to the 1000 Genomes reference panel11 and DNAm profiles quantified from bisulfite-

converted genomic whole blood DNA using the Infinium HumanMethylation BeadChip 

(HumanMethylation450 or EPIC arrays). Details of the studies for discovery and replication 

are provided in Supplementary Table 1 and Supplementary Note.

The GoDMC pipeline—To facilitate the harmonization of the large volume of data we 

developed a GoDMC pipeline that was split into several modules, each focusing on the 

separate tasks of data checking, genotype preparation, phenotype and covariate preparation, 

DNAm data preparation, and subsequent analyses. In the first module the data format of 
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the genotype data, DNAm and covariate data was checked. In addition, the number of 

individuals with DNAm and genotype data (requirement of n>100), the number of SNPs, 

the number of sites, covariates including cell counts, genotype build and strand, and the 

number of DNAm outliers were recorded. We also generated matrices with mean and SD by 

DNAm site and study descriptives. The entire pipeline can be viewed at https://github.com/

MRCIEU/godmc, and the following text describes the procedures that were used.

Genotype data—Each study performed quality control on genotype data for all autosomes 

and chromosome X (if available) and imputed to 1000 Genomes Project phase 1 or above 

using hg19/build37. Dosages were converted to bestguess data without a probability cut-off. 

SNPs that failed Hardy Weinberg equilibrium (p<1e-6), had a MAF<0.01, an info score <0.8 

or missingness in more than 5% of the participants were removed. We recoded SNPs to 

CHR:POS11 format and removed duplicate SNPs. We then harmonized the recoded SNPs 

to the 1000 Genomes Project reference using easyQC_v9.260. This harmonization script 

removed SNPs with mismatched alleles and recoded INDEL alleles to I and D.

We performed a sex check and removed participants discordant to the covariate file. We 

extracted and pruned a set of common HapMap3 SNPs (MAF>0.2, without long-range LD 

regions before we calculated the first 20 genetic PCs on LD pruned SNPs and excluding 

regions of high LD from the analysis. We used PLINK 2.061 for unrelated participants and 

GENESIS62 for related participants to identify ancestry outliers.

Ancestry outliers that deviated 7 SDs from the mean were removed. After outlier removal 

we recalculated genetic PCs for use in subsequent analyses. To identify relatedness in 

unrelated datasets, we pruned the genotype data to a set of independent HapMap 3 

SNPs with MAF>0.01 and calculated genome-wide average identity by state (IBS) using 

PLINK2.0. Participants with IBS>0.125 were removed.

DNAm data normalization and quality control—DNAm was measured in whole 

blood or cord blood using HumanMethylation450 or EPIC arrays in at least 100 European 

individuals. Each study performed normalization and quality control on the DNAm data 

independently, with most studies using functional normalization through the R package 

meffil v0.1.063 (Supplementary Table 1). Briefly, meffil has been designed to preprocess 

raw idat files to a normalization matrix for large sample sizes without large computational 

memory requirements and to perform quality control in an automated way where the analyst 

can adjust default parameters easily. Sample quality control included removal of participants 

where more than 10% of the DNAm sites failed the detection p-value of 0.1 and/or threshold 

of 3 beads. In addition, mismatched samples were identified by comparing the 65 SNPs 

on the DNAm array to the genotype array and a sex check. Additional DNAm quality 

was checked by the methylated versus unmethylated ratio, dye bias using the normalization 

control probes and bisulfite control probes. Protocols can be found here: https://github.com/

perishky/meffil/wiki. For each DNAm site, we replaced outliers that were 10 SDs from the 

mean (3 iterations) with the DNAm site mean.

Covariates—We used sex, age at measurement, batch variables (slide, plate, row if 

available), smoking (if available) and recorded cell counts to adjust for possible confounding 
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and to reduce residual variation. Additional confounders (genetic PCs, non-genetic DNAm 

PCs, and where necessary predicted smoking and cell counts) were calculated using 

the GoDMC pipeline. After quality control and normalization of the DNAm data, we 

predicted smoking status by using previously reported DNAm associations with smoking64. 

In addition, we predicted cell counts using the Houseman algorithm46 implemented in 

meffil v0.1.063. We performed a principal component analysis on the 20,000 most variable 

autosomal DNAm sites and kept all PCs that cumulatively explained 80% of the variance. 

We performed GWASs on the DNAm PCs and retained the PCs that were not associated 

with a genotype (p>1e-7). We kept a maximum of 20 non-genetic PCs for subsequent 

adjustment.

DNAm data adjustment—We attempted to minimize non-genetic variation in the DNAm 

data to improve power for mQTL detection. We adjusted datasets with predominant family 

structures (pedigrees, twin studies) and population-based studies in slightly different ways. 

For unrelated participants we regressed out age, sex, predicted cell counts, predicted 

smoking and genetic PCs (adjustment 1). For related participants we did the same except 

also fitting the genetic kinship matrix using the method described in GRAMMAR65.

We took the residuals from the first adjustment forward to regress out the non-genetic 

DNAm PCs on the adjusted DNAm beta values (adjustment 2). The residuals from these 

analyses were rank transformed and centered to have mean 0 and variance 1.

Positive and negative controls—Before we performed the meta-analysis, we checked 

the number of SNPs and INDELs, the number of sites and individuals analyzed and the 

average mean and SD for each DNAm site to identify possible inconsistencies. Each of 

the 38 studies conducted a GWAS of cg07959070. We chose this DNAm site as a positive 

control as it showed a strong cis-mQTL in several datasets on chr22 and hasn’t been 

proposed to be excluded from the analyses by probe annotation efforts59,66–68. To identify 

possible errors, we checked the cis association on chromosome 22 (p<0.001) for this DNAm 

site. In addition, we checked quantile-quantile and Manhattan plots for this DNAm site. We 

also used this control to identify studies with deflated or inflated lambdas (lambda >1.1 or 

lambda <0.9). We noticed deflation of the genomic lambda after adjustment of the index 

cis SNP in datasets with relatedness. However, lambdas were around 1 when not adjusted. 

After inspection one study was removed from the analysis due to deflation and one study 

was removed due to a lack of the positive control association signal, leaving 36 studies for 

the final meta-analysis.

Association analyses

Phase 1: creating the candidate list of associations—We performed a fast, 

comprehensive analysis of all cis- and trans-associations on 420,509 reliable59 residualised 

DNAm sites separately in 22 studies (n=16,907) using the R package Matrix eQTL v2.1.069. 

For each DNAm site j the residual value yji was regressed against each SNP k

yji = αjk + βjkxki + ejki
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where genotype values xki were coded as allele counts {0,1,2}, αjk was the intercept term, 

and βjk was the effect estimate of each SNP k on each residualized DNAm site j.

Phase 2: obtaining summary data from all studies for meta-analysis—This 

candidate list was sent to 36 studies (n=27,750) where effect sizes for all putative 

associations were recalculated by fitting linear models. For putative cis-mQTLs we 

performed linear regression as in phase 1. To improve statistical power to estimate the 

trans-mQTL effects we recorded the top cis SNP xc, for each DNAm site (based on lowest 

p-value within that study) and fit this as a covariate in the trans-mQTL regressions

yji = αjk + βjcxci + βjkxki + ejki

Evaluation of DNAm data adjustment—As adjustment for non-genetic DNAm PCs 

might have substantial benefits on power or an adverse effect by inducing collider bias70, we 

explored the impact by comparing mQTLs not adjusted for non-genetic PCs with mQTLs 

adjusted for non-genetic PCs in ARIES. Specifically, we found 80,890 clumped mQTL 

associations in the PC-adjusted dataset and 74,402 clumped mQTL associations in the 

PC-unadjusted dataset. The Pearson correlation between effect sizes of the PC-unadjusted 

clumped mQTLs vs PC-adjusted mQTLs (cis r=0.998; trans r=0.998) and PC-adjusted 

clumped mQTLs (cis r=0.997; trans r=0.997) versus PC-unadjusted mQTLs was very high 

(Supplementary Figure 36). These results suggest that if collider bias is impacting the results 

it is extremely small. The simplest explanation for the minimal difference in effect sizes 

and slightly higher mQTL yield amongst the PC-adjusted mQTLs is that reduced residual 

variance has improved power.

Impact of two-stage design on power of study—Though the multi-stage study 

design was performed out of practical necessity, we evaluated the impact it had on statistical 

power in comparison to the hypothetical situation of analysing all the data together in a 

standard one-stage mQTL design. For cis-mQTL associations we calculated the power of 

detecting an association in at least one of 22 studies at p<1e-5. To do this we calculated the 

probability of missing an association as being the product of the probability of missing it in 

study 1 AND in study 2 AND in study 3 etc.

p(miss) = ∏
i = 1

M = 22
1 − f(x = 19.5; k = 1, λ = nir2)

where f(x; k; λ) is the probability density function for the non-central chi-square distribution 

with k degrees of freedom and λ the non-centrality parameter based on the postulated 

variance explained by an mQTL (r 2) and the study sample size ni and 19.5 denotes the 

chi-square threshold at p=1e-5 with one degree of freedom.

For trans-mQTL associations we calculated the power to detect an association in at least two 

of 22 studies at p<1e-5. We calculated the probability of missing an association as being the 

product of the probability of missing it in both study 1 and study 2 AND in study 1 and 

study 3 AND in study 1 and study 4 etc.
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p(miss) = ∏
i = 1

M = 22
∏

j = 1

i = 1
1 − f(x = 19.5; k = 1, λ = nir2)f(x = 19.5; k = 1, λ = nir2)

where f(x; k; λ)is the probability density function for the non-central chi-square distribution 

with k degrees of freedom and λ the non-centrality parameter based on the postulated 

variance explained by an mQTL (r2) and the study sample sizes ni and nj and 19.5 denotes 

the chi-square threshold at p=1e-5 with one degree of freedom.

We found that we have no loss of power (<1%) for loci that explain more than 1.2% or 

less than 0.1% of the variance. Within these bounds >80% of power is lost for cis-mQTLs 

with r2 0.16% to 0.38%. For trans-mQTLs, power suffers slightly more because of requiring 

detection by at least two studies in the first stage (r2 0.27% to 0.64%) (Extended Data Fig. 

4a).

Meta-analyses—We used the SNP effect estimates and standard errors for each SNP-

DNAm site pair in the candidate list in the meta-analyses. Inverse variance fixed effects (FE) 

meta-analyses of the 36 studies were performed using METAL71. We modified METAL 

(https://github.com/explodecomputer/random-metal) to incorporate the DerSimonian and 

Laird random effect (RE) models72 and multiplicative random effects (MRE) models73. 

These results are available at: http://mqtldb.godmc.org.uk/. We also inspected the meta-

analysis and conditional analysis (see below) logfiles and removed any SNPs that had 

inconsistent allele codes between studies, which were in almost all cases multi-allelic SNPs.

We inspected our results by counting the number of associations against the direction of the 

effect size (+ or −) for each study. A high number of associations was found if the direction 

of the effect sizes agreed across studies (Supplementary Figure 2a). In addition, the average 

I2 heterogeneity estimate for the effect size direction categories was 44% (min=0%, max 

100%). For categories with more than 100 associations, average I2 was 49% (min=36%, max 

61%) (Supplementary Figure 2b). We also explored whether the number of phase 1 studies 

was correlated to I2 and tau2. We found a nonsignificant correlation (r=0.002, p=0.23, 

r=-0.001, p=0.32) indicating that mQTL associations found in a low number of phase 1 

studies didn’t show more heterogeneity than mQTL associations found in a high number of 

phase 1 studies.

To explore heterogeneity further, we meta-analyzed our SNP-DNAm pairs using FE, RE and 

MRE models and found that associations that were dropped in MRE analyses showed higher 

I2 and tau2 and smaller effect sizes and DNAm site SDs (Supplementary Figures 3-4).

Further inspection showed that trans only sites had higher I2 heterogeneity statistics 

than associations from cis only or cis+trans sites (mean I2 values of 53%, 46% and 

39%, respectively). However, as I2 and tau2 were positively correlated to effect sizes 

(Supplementary Figure 2c) we deemed the use of FE meta-analysis to be appropriate for 

reducing false negative rates.

Further downstream analyses have been described in Supplementary Note.
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Extended Data

Extended Data Fig. 1. Quality control of 36 studies.
We used 337 independent SNPs on chromosome 20 with a p-value<1e-14. The number of 

SNPs used for each study are indicated in the bottom plot. a. Mstatistic for each of the 36 

cohorts. b. Boxplot of mQTL effect sizes for each of the 36 studies. The center line of a 

boxplot corresponds to the median value. The lower and upper box limits indicate the first 

and third quartiles (the 25th and 75th percentiles). The length of the whiskers corresponds to 

values up to 1.5 times the IQR in either direction.
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Extended Data Fig. 2. Distance of SNP from DNAm site.
a. Density plot of the distance of SNP from DNAm site against the -log10 p-value of 4,533 

intra-chromosomal trans-mQTL associations (>1Mb). b. Density plot of the distance of SNP 

from DNAm site against the -log10 p-value of 248,607 cis-mQTL associations (<1Mb).
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Extended Data Fig. 3. Effect sizes and weighted standard deviation (SD) for each mQTL 
category.
a. For each DNAm site, the strongest absolute effect size (the maximum absolute additive 

change in DNAm level measured in SD per allele) was selected. The kernel density 

estimations of the effect sizes were shown for all sites with a mQTL (n=190,102), sites 

with cis only effects (n=170,986), cis effects for sites with cis and trans effects (n=11,902), 

trans effects for sites with cis and trans effects (n=11,902) and sites with trans only effects 

(n=7,214). Comparing the strongest effect size for each site in a two-sided linear regression 

model showed that cis+trans sites had larger cis effect sizes (per allele SD change = 0.05 

(s.e.= 0.002), p<2e-16) as compared to cis only sites and weaker trans effect sizes (per allele 

SD change = -0.06 (s.e.= 0.002), p<2e-16) as compared to trans only sites. To detect these 

small trans effect sizes at sites with both a cis and a trans association, it is crucial to regress 

out the cis effect to decrease the residual variance and improve power to detect a trans effect. 

b. The violin plots represent kernel density estimates of the weighted SD across 36 cohorts 

for each DNAm site. The center line of the boxplot in the violin plots corresponds to the 

median value. The lower and upper box limits indicate the first and third quartiles (the 25th 

and 75th percentiles). The length of the whiskers corresponds to values up to 1.5 times the 

IQR in either direction.
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Extended Data Fig. 4. Impact of the two-stage design on mQTL coverage.
a. Loss in power in two-stage design. We calculated the power of detecting a cis association 

in at least one of the 22 studies at p<1e-5 or a trans association in at least two of 22 studies 

at p<1e-5. b. Expected number of mQTLs. Using the number of mQTLs with a particular 

r2 value, and the power of detecting mQTLs with that r2 value, we calculated how many 

mQTLs would expect to exist with that value.
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Extended Data Fig. 5. Correlation of mQTL effects (p<1e-14) between blood and other tissues.
For each mQTL category, the correlation of genetic effects between tissues (rb) was 

estimated using the rb method25 where we used the blood mQTLs as reference. DNAm 

levels are categorized as low (<0.2), intermediate (0.2-0.8) or high (>0.8).
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Extended Data Fig. 6. Two-dimensional enrichment of SNP and DNAm site TFBS annotation.
a. To test if the annotations of the SNPs involved in trans-mQTLs were specific to the 

annotations of the DNAm sites that they influence, we compared the real SNP-DNAm site 

pairs against permuted SNP-DNAm site pairs, where the biological link between SNP and 

site is severed whilst maintaining the distribution of annotations for the SNPs and sites. 

We constructed 100 such permuted datasets. b. SNP and site positions were annotated 

against genomic features, and we quantified how frequently mQTLs were found for each 

pair of SNP-DNAm site annotations. This enabled the construction of two-dimensional 
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annotation matrices for both the real trans-mQTL list and the permuted trans-mQTL lists. c. 

Distribution of two-dimensional enrichment values of trans-mQTLs. There was substantial 

departure from the null in the real dataset for all tissues indicating that the TFBS of a 

site depended on the TFBS of the SNP that influenced it. d. A bipartite graph of the 

two-dimensional enrichment for trans-mQTLs, SNPs annotations (blue) with pemp< 0.01 

after multiple testing correction co-occur with particular site annotations (red).

Extended Data Fig. 7. Correspondence of MR estimates amongst multiple independent 
instruments.
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a. To evaluate if a site having a shared causal variant with a trait was potentially due to 

the site being on the causal pathway to the trait, we reasoned that independent instruments 

for the site should exhibit consistent effects on the outcome consistent with the original 

colocalizing variant. b. Amongst the putative colocalizing signals, 440 involved a DNAm 

site that had at least one other independent mQTL. The plot shows the causal effect estimate 

estimated from the original colocalizing signal against the causal effect estimates obtained 

from the independent variants (n=440). Grey regions represent the 95% confidence of the 

slope. c. Correspondence of MR estimates amongst multiple independent instruments on 

36 blood traits. To evaluate if a site having a shared causal variant with a blood trait 

was potentially due to the site being on the causal pathway to the trait, we reasoned 

that independent instruments for the site should exhibit consistent effects on the outcome 

consistent with the original colocalizing variant. Amongst the putative colocalizing signals, 

30% involved a DNAm site that had at least one other independent mQTL. The plot shows 

the causal effect estimate estimated from the original colocalizing signal against the causal 

effect estimates obtained from the independent variants. The HLA region has been removed 

and betas are plotted.

Extended Data Fig. 8. Genomic inflation factors for genome-wide scans of causal effects of traits 
on DNAm sites.
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Each trait (x-axis) was tested for causal effects against (on average) 317,659 DNAm sites, 

excluding sites in the MHC region. The p-values from IVW MR analysis were used to 

estimate the genomic inflation for each trait (y-axis). Traits are ordered by genomic inflation 

factor.
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Data Availability

A database of our results is available as a resource to the community at http://

mqtldb.godmc.org.uk. The individual level genotype and DNAm data are available by 

request from each individual study or can be downloaded from Gene Expression Omnibus 

(GEO, https://www.ncbi.nlm.nih.gov/geo/), European Genome-phenome Archive (EGA, 

https://ega-archive.org/) or Array Express (https://www.ebi.ac.uk/arrayexpress/). As the 

consents for most studies require the data to be under managed access, the individual level 

genotype and DNAm data are not available from a public repository unless stated.

ALS BATCH1 & 2 data are available to researchers by request as outlined in the Project 

MinE access policy. ARIES data are available to researchers by request from the Avon 

Longitudinal Study of Parents and Children Executive Committee (http://www.bristol.ac.uk/

alspac/researchers/access/) as outlined in the study’s access policy http://www.bristol.ac.uk/

media-library/sites/alspac/documents/researchers/data-access/ALSPAC_Access_Policy.pdf. 

BAMSE data are available from the GABRIEL consortium as well as on request in 

EGA, under accession no. EGAC00001000786. BASICMAR DNAm data are available 

under accession number GSE69138. Born in Bradford data are available to researchers 

who submit an expression of interest to the Born in Bradford Executive Group (https://

borninbradford.nhs.uk/research/). BSGS DNAm data are available under accession code 

GSE56105. GOYA data are available by request from DNBC, https://www.dnbc.dk/. 

Dunedin data are available via a managed access system (contact: ac115@duke.edu). E-
Risk DNAm data are available under accession number GSE105018. Estonian biobank 
(ECGUT) data can be accessed upon ethical approval by submitting a data release 

request to the Estonian Genome Center, University of Tartu (http://www.geenivaramu.ee/en/

access-biopank/data-access). EPIC-Norfolk data can be accessed by contacting the study 

management committee http://www.srl.cam.ac.uk/epic/contact/. Requests for EPICOR data 

accession may be sent to Prof. Giuseppe Matullo (giuseppe.matullo@unito.it). FTC data 

can be accessed upon approval from the Data Access Committee of the Institute for 

Molecular Medicine Finland FIMM (fimm-dac@helsinki.fi). Requests for Generation 
R data access are evaluated by the Generation R Management Team. Researchers 

can obtain a de-identified GLAKU dataset after having obtained an approval from 

the GLAKU Study Board. GSK DNAm data are available under accession number 

GSE125105. INMA data are available by request from the INfancia y Medio Ambiente 

Executive Committee for researchers who meet the criteria for access to confidential 

data. IOW F2 data are available by request from Isle of Wight Third Generation 

Study. Please contact Mr Stephen Potter (stephen.potter@iow.nhs.uk). LLS DNAm 

data were submitted to the EGA under accession EGAS00001001077. LBC1921 and 

LBC1936 data are available on request from the Lothian Birth Cohort Study, Centre 

for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh (email: 

I.Deary@ed.ac.uk). DNAm from MARTHA participants are available under accession 

number E-MTAB-3127. NTR DNAm data are available upon request in EGA, under 
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the accession code EGAD00010000887. PIAMA data are available upon request. 

Requests can be submitted to the PIAMA Principal Investigators (https://piama.iras.uu.nl/

english/). PRECISESADS data are available through ELIXIR at doi:10.17881/th9v-xt85. 

Collaboration in data analysis of PREDO is possible through specific research proposals 

sent to the PREDO Study Board (predo.study@helsinki.fi) or primary investigators Katri 

Räikkönen [katri.raikkonen@helsinki.fi] or Hannele Laivuori [hannele.laivuori@helsinki.fi]. 

Data is available upon request at project MinE (https://www.projectmine.com). Raine data 

are available upon request (https://ross.rainestudy.org.au). Requests for the data accession of 

the Rotterdam Study may be sent to: Frank van Rooij (f.vanrooij@erasmusmc.nl). SABRE 
data are available by request from SABRE (https://www.sabrestudy.org). SCZ1 DNAm data 

are available under accession number GSE80417. SCZ2 DNAm data are available under 

accession number GSE84727. SYS data are available upon request addressed to Dr Zdenka 

Pausova [zdenka.pausova@sickkids.ca] and Dr Tomas Paus [tpausresearch@gmail.com]. 

Further details about the protocol can be found at [http://www.saguenay-youth-study.org/]. 

TwinsUK DNAm data are available in GEO under accession numbers GSE62992 and 

GSE121633. TwinsUK adipose DNAm data are stored in EGA under the accession number 

E-MTAB-1866. Access to additional individual-level genotype and phenotype data can 

be applied for through the TwinsUK data access committee http://twinsuk.ac.uk/resources-

for-researchers/access-our-data/. Individual level DNAm and genetic data from the UK 
Household Longitudinal Study are available on application through EGA under accession 

EGAS00001001232. Non-identifiable Generation Scotland data from this study will be 

made available to researchers through the GS:SFHS Access Committee. MESA DNAm data 

are available under accession GSE56046 and GSE56581. Tissue DNAm data are available 

from GSE78743. Brain DNAm data can be found under accession number GSE58885. 

Cohort descriptions and further contact details can be found in the Supplementary Note.

For the enrichments, we used chromatin states from the Epigenome 

Roadmap (https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/

ChmmModels/imputed12marks/jointModel/final/), TFBSs from the ENCODE project 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/ 

downloaded from the LOLA core database (http://databio.org/regiondb) and gene 

annotations from https://zwdzwd.github.io/InfiniumAnnotation or from GARFIELD (https://

www.ebi.ac.uk/birney-srv/GARFIELD/). To extract GWA signals for colocalization, we 

used the MRBase database (https://www.mrbase.org/).

Code Availability

Datasets were processed using https://github.com/perishky/meffil unless stated otherwise. 

Individual study analysts used a github pipeline https://github.com/MRCIEU/godmc to 

conduct the mQTL analysis. We used https://github.com/MRCIEU/godmc_phase1_analysis 

for the phase1 analysis, https://github.com/explodecomputer/random-metal for the meta 

analyses and https://github.com/MRCIEU/godmc_phase2_analysis for the follow-up 

analyses.
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Figure 1. Discovery and replication of mQTLs
a. Study Design. In the first phase, 22 cohorts performed a complete mQTL analysis of 

up to 480,000 sites against up to 12 million variants; retaining their results for p<1e-5. 

In the second phase, 120 million SNP-DNAm site pairs selected from the first phase, and 

GWA catalog SNPs against 345k DNAm sites, were tested in 36 studies (including 20 

phase 1 studies) and meta-analyzed. QC, quality control. b. Distributions of the weighted 

mean of DNAm across 36 cohorts for cis only, cis+trans and trans only sites. The weighted 

mean DNAm level across 36 studies was defined as low (<20%), intermediate (20%-80%) 
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or high (>80%). Plots are colored with respect to the genomic annotation. Cis only sites 

showed a bimodal distribution of DNAm. Cis+trans sites showed intermediate levels of 

DNAm. Trans only sites showed low levels of DNAm. c. Discovery and replication effect 

size estimates between GoDMC (n=27,750) and Generation Scotland (n=5,101) for 169,656 

mQTL associations. The regression coefficient is 1.13 (se=0.0007). d. Relationship between 

DNAm site heritability estimates and DNAm variance explained in Generation Scotland. 

The center line of a boxplot corresponds to the median value. The lower and upper box 

limits indicate the first and third quartiles (the 25th and 75th percentiles). The length 

of the whiskers corresponds to values up to 1.5 times the IQR in either direction. The 

regression coefficient for the twin family study was 3.16 (se=0.008) and for the twin study 

2.91 (se=0.008) across 403,353 DNAm sites. The variance explained for DNAm sites with 

missing r2 (n=277,428) and/or h2=0 (Twin family: n=80,726 Twins: n=34,537) were set to 0. 

GS, Generation Scotland.
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Figure 2. Cis- and trans-mQTLs operate through distinct mechanisms
a. Distributions of enrichments for chromatin states and gene annotations among mQTL 

sites and SNPs. Enrichment analyses were performed using 25 combinatorial chromatin 

states from 127 cell types (including 27 blood cell types) and gene annotations. The 

heatmap represents the distribution of ORs for cis only, trans only, or cis+trans sites 

and SNPs. For the enrichment of chromatin states, ORs were averaged across cell types. 

The following chromatin states were analyzed: TssA, Active TSS; PromU, Promoter 

Upstream TSS; PromD1, Promoter Downstream TSS with DNase; PromD2, Promoter 

Downstream TSS; Tx5', Transcription 5'; Tx, Transcription; Tx3', Transcription 3'; TxWk, 

Weak transcription; TxReg, Transcription Regulatory; TxEnh5', Transcription 5' Enhancer; 

TxEnh3', Transcription 3' Enhancer; TxEnhW, Transcription Weak Enhancer; EnhA1, Active 

Enhancer 1; EnhA2, Active Enhancer 2; EnhAF, Active Enhancer Flank; EnhW1, Weak 

Enhancer 1; EnhW2, Weak Enhancer 2; EnhAc, Enhancer Acetylation Only; DNase, 

DNase only; ZNF/Rpts, ZNF genes & repeats; Het, Heterochromatin; PromP, Poised 

Promoter; PromBiv, Bivalent Promoter; ReprPC, Repressed PolyComb, Quies Quiescent/

Low. The significance was categorized as: *=FDR<0.001;**=FDR<1e-10;***=FDR<1e-50 

b. Distributions of enrichment for occupancy of TFBSs among mQTL sites and SNPs. Each 

density curve represents the distribution of ORs for cis only, trans only, or cis+trans sites 

(left) and SNPs (right). c. Distributions of enrichment of mQTLs among 41 complex traits 

and diseases. Each density curve represents the distribution of ORs for cis only, trans only, 

or cis+trans SNPs.
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Figure 3. Communities constructed from trans-mQTLs.
a. A network depicting all communities in which there were twenty or more sites. Random 

walks were used to generate communities (colors), so occasionally a DNA site connects 

different communities. b. The relationship between genomic annotations, mQTLs and 

communities. Communities 9 and 22 comprised DNAm sites that are related through shared 

genetic factors. The sankey plots show the genomic annotations for the genetic variants (left) 

and for the DNAm sites (right). The DNAm sites comprising these communities are enriched 

for TFBSs related to the cohesin complex and NFkB, respectively. c. Enrichment of GWA 
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traits among community SNPs. The genomic loci for each of the 56 largest communities 

were tested for enrichment of low p-values in 133 complex trait GWASs (y-axis) against 

a null background of community SNPs. The x-axis depicts the two-sided -log10 p-value 

for enrichment, with the 5% FDR shown by the vertical dotted line. Colors represent log 

odds ratios. Enrichments were particularly strong for blood-related phenotypes (including 

circulating metal levels).
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Figure 4. Identifying putative causal relationships between sites and traits using bi-directional 
MR.
Aggregated results from a systematic bi-directional MR analysis between DNAm sites and 

116 complex traits. The y-axis represents the two-sided p-value from MR analysis. The 

top plot depicts results from tests of DNAm sites colocalizing with complex traits. The 

light grey points represent MR estimates that either did not surpass multiple testing, or 

shared small p-values at both the DNAm site and complex trait but had weak evidence of 

colocalization. Bold, colored points are those that showed strong evidence for colocalization 

(Posterior probability>0.8 for H4 - one shared SNP for DNAm and trait.). The bottom plot 
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shows the two-sided -log10 p-values from MR analysis of risk factor or genetic liability of 

disease on DNAm levels. Extensive follow up was performed on DNAm site-trait pairs with 

putative associations, and those that pass filters are plotted in bold and colored according 

to the trait category. A substantial number of MR results in both directions exhibited very 

strong effects but failed to withstand sensitivity analyses.
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