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Abstract
Failures of self-control can manifest as externalizing behaviors (e.g., aggression, rule-breaking) that have far-reaching 
negative consequences. Researchers have long been interested in measuring children’s genetic risk for externalizing 
behaviors to inform efforts at early identification and intervention. Drawing on data from the Environmental Risk 
Longitudinal Twin Study (N = 862 twins) and the Millennium Cohort Study (N = 2,824 parent–child trios), two 
longitudinal cohorts from the United Kingdom, we leveraged molecular genetic data and within-family designs to 
test for genetic associations with externalizing behavior that are not affected by common sources of environmental 
influence. We found that a polygenic index (PGI) calculated from genetic variants discovered in previous studies of 
self-controlled behavior in adults captures direct genetic effects on externalizing problems in children and adolescents 
when evaluated with rigorous within-family designs (βs = 0.13–0.19 across development). The PGI for externalizing 
behavior can usefully augment psychological studies of the development of self-control.
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From very young ages, children are required to delay 
gratification, regulate their emotions, and control their 
impulses, and their success or failure in developing 
self-control has lifelong consequences. Difficulty with 
self-control is a central feature of the externalizing 
spectrum, a constellation of behaviors such as aggres-
sion, hyperactivity, and rule-breaking; the clinical mani-
festations of externalizing behavior include conduct 
disorder, attention-deficit/hyperactivity disorder 
(ADHD), and substance use disorders (Kotov et  al., 
2017). Looking beyond clinical diagnoses, self-control 
measured in childhood predicts illness, impecunity, and 
victimization well into adulthood (Moffitt et al., 2011; 
Tanksley et al., 2020). Likewise, externalizing problems 
in adolescence have been linked with life-course num-
ber of emergency room visits, prescription fills, and 
injury claims, as well as reliance on social welfare and 
interaction with the criminal justice system (Rivenbark 
et al., 2018). Overall, a young person’s difficulty with 
self-control has profound personal and societal costs, 
making early detection and intervention a public-health 
priority (Moffitt et al., 2011).

Research with twins and adoptees has long hinted 
that genetic differences contribute to variation in self-
control problems (Barr & Dick, 2020), but researchers 
have previously been unable to measure that risk 
directly. Recently, a large-scale genome-wide associa-
tion study (GWAS) attempted to study the genetic 
underpinnings of self-control by examining its mani-
festations in the form of adult externalizing behaviors. 
Specifically, data on seven traits relevant to self-control 
(i.e., ADHD, problematic alcohol use, cannabis use, 
number of sexual partners, age at first sexual inter-
course, smoking initiation, and general risk tolerance) 
were pooled from 1.5 million people of European 
genetic ancestry (Karlsson Linnér et al., 2021) to iden-
tify genetic variants associated with shared variation 
across all seven traits. A follow-up analysis in indepen-
dent data sets found that these genetic variants, when 
aggregated in a polygenic index (referred to as the 
“externalizing PGI”), were associated with an array of 
adult behaviors that reflect difficulties with self-control, 
including opioid and other substance use, employment 
histories, and contact with the criminal justice system. 
The externalizing PGI also explained 9% to 10% of the 
variance in a latent factor of phenotypic externalizing 
that matched the behaviors included in the discovery 

GWAS. Given that these adult behaviors are often 
rooted in difficulties with self-control that emerge early 
in development, these results suggest that the external-
izing PGI has potential utility for research aiming to 
understand, and ultimately to intervene on, the devel-
opment of self-control problems in childhood.

However, associations between a child’s PGI and 
their behavior must be interpreted carefully (Pingault 
et al., 2022; Raffington et al., 2020). First, PGI associa-
tions may be driven by the measured genetic variants 
included in the index or by other genetic variants that 
are correlated with these variants across the genome 
(i.e., in linkage disequilibrium). Second, the genetic 
variants discovered to be associated with a given phe-
notype or set of phenotypes are unlikely to be uniquely 
associated with only that phenotype (Belsky & Harden, 
2019). Although the externalizing PGI might be use-
ful for researchers focused on self-control problems, 
it might also be widely associated with any number of 
other social, behavioral, neurobiological, and physio-
logical phenotypes.

Third, PGI associations may operate not only through 
biological processes happening within the body and 
brain of the individual whose genotype is being mea-
sured but also through social and environmental trans-
actions in which the individual’s initial genetically 
influenced characteristics leads them to select or evoke 
particular environmental exposures that affect the sub-
sequent development of the phenotype (“nature via 
nurture”; Lynch, 2017; Plomin et al., 1977). Such active 
and evocative gene–environment correlations are 
undoubtedly critical for the development of external-
izing behavior (Burt, 2022).

Fourth, and of particular concern in the current article, 
PGI associations might be driven by demographic and 
environmental processes that do not originate with the 
child whose genotype is being measured but instead vary 
between nuclear families; such processes include popula-
tion stratification, assortative mating, and indirect genetic 
effects (also known as “genetic nurture”; Friedman et al., 
2021; Young et al., 2019). These processes have been 
found to contribute heavily to PGI associations with some 
social and behavioral phenotypes, most notably educa-
tional outcomes (Okbay et al., 2022). Indirect genetic 
effects, in particular, might be particularly important for 
the development of self-control because these effects 
operate through environments provided by biological 
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relatives, including parents (Gottfredson & Hirschi, 1990). 
For example, if a genetic variant increases the likelihood 
of maternal alcohol abuse, and parenting by a substance-
abusing mother increases a child’s risk for conduct prob-
lems, then that genetic variant might come to be correlated 
with child conduct problems, but its effect is mediated 
through an environmental exposure that occurs regard-
less of the child’s own genetic inheritance. Before PGIs 
are further integrated into the study of the development 
of self-control problems, additional information regarding 
the extent to which the externalizing PGI is tapping envi-
ronmental differences between families rather than pro-
cesses originating in the child’s own genetics is 
necessary.

One approach for better understanding the sources 
of PGI-phenotype associations is to focus on genetic 
differences that arise within nuclear families (Selzam 
et al., 2019; Young et al., 2019). Within-family designs 
leverage the natural experiment of segregation of geno-
types occurring during reproduction: Every parent has 
two copies of every gene, and which one a child inher-
its is random. Accordingly, a within-family association 
between externalizing behavior and a PGI can be inter-
preted in terms of a “direct” causal effect of children’s 
genetics on within-family variation in behavior, an 
effect that might be substantially mediated by children’s 
interactions with their social environment but that can-
not be attributed to environmental stratification between 
families. Within-family genetic studies are thus critical 
for building knowledge about processes by which chil-
dren’s genotypes come to be correlated with their life-
course outcomes (Raffington et al., 2020).

Here, we estimated associations between the exter-
nalizing PGI and children’s self-control problems. More 
specifically, we tested whether a PGI trained on a latent 
factor of adult externalizing behavior is associated with 
observed symptoms of inattention, hyperactivity, and 
conduct problems. To identify direct genetic effects of 
the externalizing PGI (i.e., no environmental influence), 
we used two within-family designs. First, the dizygotic 
twin comparison leverages genetic differences between 
full siblings, effectively adjusting for genetic effects 
from parental genotypes and shared environmental fac-
tors with which parental genotypes may be correlated. 
Second, the parent–child trio design directly models 
parental genetic associations with offspring outcomes 
by including their genotypes in the model, thus making 
the offspring’s own genotype associations independent 
of their parents’ genotypes (and the family environ-
ment; Kong et  al., 2018). We used two longitudinal 
cohorts from the United Kingdom: the Environmental 
Risk Longitudinal Twin Study (E-Risk; N = 862 same-sex 
dizygotic twins) and the Millennium Cohort Study (MCS; 

N = 2,824 parent–child trios). Our analysis focuses on 
childhood through adolescence, the period when prob-
lems with self-control first manifest and the period of 
most interest for early detection and intervention 
(Moffitt et al., 2011).

Transparency and Openness

This analysis was preregistered on the OSF at https://
osf.io/nhtw2. Code for the analysis is available from the 
corresponding authors on request. Sensitive health 
information (genetic data) was included in the analysis 
data; thus, these data are not publicly accessible. 
Information on data access for qualified researchers 
may be accessed at https://cls.ucl.ac.uk/data-access-
training/data-access for the MCS and https://eriskstudy 
.com/data-access for the E-Risk.

Method

Data sources

Data for this study come from two cohorts based in the 
United Kingdom. The E-Risk is a prospective birth 
cohort of 2,232 twins (44% dizygotic) born between 
1994 and 1995 in England and Wales. The sample was 
assessed at the ages of 5, 7, 10, 12, and 18 years and 
has been shown to reflect the full range of socioeco-
nomic conditions in the United Kingdom (Moffitt & 
Team, 2002; Odgers et al., 2012). The analytic sample 
included only dizygotic twin pairs (50% female) with 
complete data and who self-identified as White British 
(N = 862 twins). Zygosity was confirmed with identity-
by-descent estimates (π̂) derived from array data 
(Hannon et al., 2018). The MCS is a nationally repre-
sentative prospective birth cohort of 18,827 children 
(18,552 families) born in the United Kingdom at the 
turn of the new century. The sample was observed at 
the ages of 9 months and 3, 5, 7, 11, 14, and 17 years 
and was designed to capture the full scope of sociode-
mographic composition in the United Kingdom through 
the oversampling of disadvantaged families (Connelly 
& Platt, 2014). The analytic sample included complete 
genotyped parent–child trios (children were 50% 
female) whose genotypes most closely resembled 
genomic reference panels sampled from Europe com-
pared with elsewhere in the world (N = 2,824). Further 
details about each cohort are provided in the 
Supplemental Material available online. (Additional 
cohorts were considered in our original analysis plan 
on the OSF. We updated our analysis plan to limit 
cohorts to only those with at least 200 unique families 
to preserve adequate statistical power.)

https://osf.io/nhtw2
https://osf.io/nhtw2
https://cls.ucl.ac.uk/data-access-training/data-access
https://cls.ucl.ac.uk/data-access-training/data-access
https://eriskstudy.com/data-access
https://eriskstudy.com/data-access
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Polygenic scoring

We computed PGIs on the basis of the summary statistics 
from a multivariate GWAS of traits and behaviors related 
to self-control in adulthood (Karlsson Linnér et al., 2021). 
No significance threshold was applied to select single-
nucleotide polymorphisms (SNPs) for inclusion in PGI 
analyses (i.e., all matched SNPs were included). Linkage 
disequilibrium adjustment was accomplished in the MCS 
cohort using LDpred2 (Privé et  al., 2020) and in the 
E-Risk cohort using PRSice-2 (Choi & O’Reilly, 2019). 
Full details about genotyping and PGI construction are 
provided in the Supplemental Material.

Measures

Externalizing behavior problems. Externalizing behav-
ior problems were assessed using two behavioral instru-
ments: the Child Behavioral Checklist (CBCL; Achenbach 
& Edelbrock, 1991) in the E-Risk and the Strengths and 
Difficulties Questionnaire (SDQ; Goodman, 1997) in the 
MCS. Following prior research, a measure of externaliz-
ing behavior problems was derived by combining infor-
mation from two subscales from each instrument: the 
aggressive behavior/rule-breaking subscales from the 
CBCL and the conduct problems and hyperactivity/ 
inattention SDQ subscales. Because both cohorts are 
population-based (i.e., nonclinical), they demonstrated 
similar prevalence rates of clinically significant cases for 
externalizing disorders/symptoms. For instance, by the 
age of 12 years (the last wave of data used in the current 
study), 11.9% and 15.6% of twins in the E-Risk met the 
diagnostic criteria from the fourth edition of the 
Diagnostic and Statistical Manual of Mental Disorders 
(DSM-IV; American Psychiatric Association, 1994) for 
ADHD and conduct disorder, respectively. Likewise, by 
the age of 17 years (the last wave used), 9% and 12.4% of 
youths in the full MCS cohort demonstrated clinically sig-
nificant levels of hyperactivity and conduct problems (as 
reported by parents), respectively.

In the E-Risk cohort, the externalizing behavior prob-
lems measure was constructed by averaging each CBCL 
subscale across all reporters (i.e., parent, teacher) for 
a specific observation and then summing the two aver-
ages together. The resulting scores were right-skewed, 
so we added a positive constant of 1 and log-trans-
formed the scale to achieve normality. For the MCS, the 
SDQ subscales were averaged across reporters (i.e., 
parent, teacher, self-report) for each event, and then 
scores across all events were entered into a principal 
component (PC) analysis, and the first PC was extracted. 
The resulting externalizing scores for both cohorts were 
then residualized for age, sex, and their interaction and 
then averaged across events such that every participant 
in a cohort had a single age- and sex-independent 

externalizing score. For developmentally sensitive (i.e., 
within-epoch) analyses, externalizing scores were resid-
ualized and averaged within each developmental 
period, producing externalizing scores that were age- 
and sex-independent but specific to developmental 
periods.

Family-level variables. We tested the impact of two 
family-level mediators through which genetic indirect 
effects might operate: parental externalizing and parental 
socioeconomic status (SES).

Parental externalizing problems. In the E-Risk cohort, 
parental externalizing was measured using mothers’ 
reports for themselves and the twins’ biological fathers 
when the children were 5 years old using the Adult 
Behavioral Checklist (Achenbach, 1997) and supple-
mented with questions from the Diagnostic Interview 
Schedule (Robins et al., 1995) asking about the lifetime 
presence of DSM-IV symptoms of antisocial personality 
disorder (for more details, see Caspi et al., 2001; see also 
the Supplemental Material). In the MCS cohort, parental 
externalizing was measured by entering three variables 
that were measured when the children were 14 years old 
into a PC analysis and extracting the first PC: an index of 
alcohol problems (Alcohol Use Disorders Identification 
Test; Piccinelli et  al., 1997) and the agreeableness and 
conscientiousness subscales (reverse-coded) from the 
Big Five personality inventory (Costa & McCrae, 1992). 
In both cohorts, standardized externalizing composite 
variables were averaged across parents to produce the 
final parental externalizing measures.

Parental SES. In the E-Risk, we measured parental SES 
using a standardized composite index of income, educa-
tion, and social class assessed at the age of 5 years (M = 
0, SD = 1). In the MCS, parental SES was operationalized 
as a composite of average family income (log) between 
the ages of 9 months and 7 years and average paren-
tal educational attainment (highest earned degree). Both 
income and educational-attainment variables were stan-
dardized (M = 0, SD = 1) and then averaged across par-
ents to produce the final time-stable parental SES.

Covariates. We adjusted for the first 10 ancestry PCs to 
account for population stratification. Both cohorts pro-
cessed their genotypes in single batches, so no technical 
covariates were included. We adjusted for age, sex, and 
their interaction; however, these covariates were residual-
ized out of the outcome rather than included in the model 
alongside other covariates (for a description, see above). 
Additionally, the E-Risk sample did not include ancestry 
PCs in analytic models, but instead they were residualized 
out of the externalizing PGI (see Supplemental Methods 
section in the Supplemental Material).
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Analytic plan

Genetic effects. In the current study, we identified two 
distinct genetic effects: the population and direct genetic 
effects. The population effect includes the direct genetic 
effects as well as other sources of environment influence 
(e.g., population stratification, assortative mating, indi-
rect genetic effects) and is estimated as follows:

EXT PGIpopulationij ij= β ( ),

where phenotypic externalizing behavior problems, 
EXT, of individual i in family j is regressed on their 
externalizing PGI. Because of the presence of genetic 
effects other than the direct effects, the βpopulation is often 
inflated beyond the true direct genetic effect (i.e., 
genetic correlations between the genes of others in the 
environment and the outcome are absorbed into the 
population estimate; Young et al., 2019).

Next, we identified the direct genetic effect of the 
externalizing PGI by leveraging within-family methods 
developed for the two types of family structures in the 
current study: full siblings and parent–child trios. 
Following prior research (Demange et  al., 2022), we 
identified the direct genetic effects for full siblings (or 
dizygotic twins) by estimating a linear model that parti-
tions genetic effects into within- and between-pair 
genetic effects:

EXT PGI PGI PGIwithin betweenij ij j j= − +β β( ) ( ),

where PGIij is the externalizing PGI value for individual 
i in family j and 

[

PGI j
]

 is the family-specific average 
externalizing PGI value within family j. This approach 
decomposes the PGI association into a within-family 
component, βwithin, representing the direct genetic 
effect, versus a between-family component, βbetween, 
representing the residual genetic effects. Finally, we 
identified direct genetic effects for parent–child trios 
using a linear model of the following form:

EXT PGI Child PGI Mother

PGI Father

ij ij j

j

= +

+

β( ) β( )

β( )

_ _

_ ,

where β(PGI_Childij) captures the direct genetic effect 
for the child, the residual genetic effects having been 
adjusted for by the inclusion of both parents’ PGI. All 
models were estimated as linear models that include 
the first 10 genetic PCs to adjust for population strati-
fication (note that population stratification was adjusted 
for in the E-Risk by residualizing the externalizing PGI 
before the analysis). Bias-adjusted confidence intervals 
(CIs) were estimated using 1,000 bootstrapped samples 
of each model.

Developmental analysis. Using the above methods to 
identify the population and direct genetic effects, we esti-
mated a series of models to investigate the dynamic nature 
of externalizing behavior across development. The cohorts 
in the current study observed their participants at different 
ages throughout development. To maximize comparabil-
ity across cohorts, we binned observations within three 
developmentally informed epochs: preschool (< 5 years), 
childhood (5–10 years), and adolescence (11–17 years; for 
a breakdown of the timing of each cohort’s observations 
relative to developmental epochs, see Fig. 1).

Supplemental analyses. We concluded by investigat-
ing three possible sources of influence on the results of 
our main analysis. First, we investigated the influence of 
parental behaviors in the forms of assortative mating and 
family-level variables. In the E-Risk, we examined assor-
tative mating by estimating the co-twin correlation of the 
externalizing PGI (i.e., a correlation with a CI that did not 
include an indicated assortment of 0.5). In the MCS, we 
examined assortative mating related to externalizing 
genetics by comparing the parents of each trio on their 
externalizing PGI. Under phenotypic assortment, mate-
pair genetics will be independent after adjusting for 
mate-pair phenotypes (Bulmer, 1980). Thus, mate-pair 
PGI correlations should be equal to the product of (a) 
maternal PGI-phenotype correlation, (b) paternal PGI-
phenotype correlation, and (c) maternal- and paternal-
phenotype correlation (Okbay et  al., 2022). (These 
analyses were not preregistered.) We also tested two 
family-level variables (i.e., parental externalizing behav-
ior and SES) as possible mechanisms contributing to 
shared environmental influence in population genetic 
effects. Second, we explored the possibility of parent-
specific effects by adjusting for only one parent at a time 
and seeing which adjustment brought the estimate of the 
population genetic effect closest to the estimate for the 
direct genetic effect (these models were estimated only 
in the MCS). We calculated the percentage change in 
effect size attributable to each parent as follows:

Parental control %

Partial direct genetic effect direct geneti

( ) =
− cc effect

Population genetic effect direct genetic effect−
×100,

where “partial direct genetic effect” is the estimate for 
an offspring’s externalizing PGI on their externalizing 
behavior adjusting for the externalizing PGI of a single 
parent. These analyses allowed us to examine which 
parent made larger contributions to the population 
genetic effect. Third, and finally, we tested for possible 
sex differences across development by reestimating our 
main models while including main and multiplicative 
interaction terms with sex.
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Results

Young people with higher externalizing 
PGIs showed more externalizing behavior 
problems even when comparing  
within families

Across cohorts, young people who had higher EXT-PGI 
values showed more externalizing behavior problems 
with zero-order correlations (r) ranging from 0.17 to 
0.20 for the E-Risk and MCS cohorts, respectively (Fig. 
2a). We next estimated between- and within-family 

linear models, pooling all available data within each 
cohort (Table 1). Across the E-Risk dizygotic twin sam-
ple, children with higher EXT-PGI values also exhibited 
more externalizing behavior problems, βpopulation = 0.17, 
95% CI = [0.10, 0.24], false discovery rate (FDR)-adjusted 
p value (pFDR) < .001. When comparing siblings within 
the same family to one another, we found the twins 
with the higher EXT-PGI values again had more exter-
nalizing behavior problems, on average, than their co-
twins, βdirect = 0.13, 95% CI = [−0.002, 0.25], pFDR = .077 
(“all youths” model in Fig. 2b). We note that the esti-
mate from the within-family model was not statistically 

E-Risk

MCS

5 7 10 12

53 7 11 14 17

Developmental
Epoch

Preschool    (<5)
Child           (5-10)
Adolescent  (11-17)

2000 2005 2010 2015 2020

Fig. 1. Data-collection timeline and key study variables. E-Risk = Environmental Risk Longitudinal 
Twin Study; MCS = Millennium Cohort Study; ASPD = antisocial personality disorder.
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significant, largely because of the increase in uncer-
tainty typical of sibling fixed-effects model (Kaufman, 
2008). We observed similar patterns for the children in 
the MCS cohort, with children with higher EXT-PGI 
values also demonstrating more externalizing problems 
across development, βpopulation = 0.2, 95% CI = [0.17, 
0.24], pFDR < .001. After adjusting for their parents’ geno-
types, we found nearly identical associations that 
remained statistically significant, βdirect = 0.19, 95% CI = 
[0.14, 0.25], pFDR < .001.

To formally test for attenuation among the between- 
and within-family estimates, we evaluated the standard-
ized difference (STDDIFF) between βpopulation and βdirect, 
that is, a z-statistic assumed to be normally distributed 
(Fig. S1 in the Supplemental Material; Karlsson Linnér 
et  al., 2021). In the models that pooled data across 
development, we failed to find evidence of attenuation 
in the E-Risk (STDDIFF = −0.94) or the MCS (STDDIFF = 
−0.53) when comparing the between- and within-family 
models (both two-sided ps > .05).

These results are consistent with the conclusion that 
the association between the EXT-PGI and externalizing 
behavior in young people is primarily explained by 
direct genetic effects rather than by other environmen-
tally contingent processes, such as population stratifica-
tion, assortative mating, or indirect genetic effects. 
However, by pooling data across development, these 
results could be masking heterogeneity in the effects 
of the EXT-PGI within specific developmental epochs. 
We examined this possibility next.

Genetic associations with externalizing 
behavior problems differ across 
development

We found evidence for a moderate degree of heteroge-
neity in PGI associations across developmental epochs. 
We again estimated between- and within-family models 
but pooled data within discrete developmental epochs 
instead of across all observations. These epochs were 
preschool (< 5 years), childhood (5–10 years), and ado-
lescence (11–17 years; for a depiction of how observa-
tions from each cohort fall into each epoch, see Fig. 1).

Only the MCS provided data on externalizing behav-
ior problems (as reported by parents) within the pre-
school epoch. We found that children younger than 5 
years who had higher EXT-PGI values were also 
reported to have more externalizing behavior problems, 
βpopulation = 0.12, 95% CI = [0.08, 0.16], pFDR < .001. After 
adjusting for parental genotypes, this association 
reduced somewhat, βdirect = 0.08, 95% CI = [0.02, 0.14], 
pFDR = .008, although we failed to find evidence of a 
substantive attenuation in effect size using conventional 
statistical thresholds (STDDIFF = −1.91, two-sided p = 
.057; Fig. 2b and Table 1).

The childhood epoch contained the largest epoch-
specific effect sizes for both cohorts. The dizygotic 
twins in the E-Risk cohort demonstrated the expected 
pattern of associations, with larger between-family esti-
mates, βpopulation = 0.16, 95% CI = [0.1, 0.23], pFDR < .001, 
than within-family estimates, βdirect = 0.13, 95% CI = 
[0.00, 0.26], pFDR = .077, but we again failed to find 
evidence of a statistical difference between effect sizes 
(STDDIFF = −0.58, two-sided p = .561). The MCS cohort 
exhibited the opposite trend. Children with higher EXT-
PGI values were predicted to have slightly higher levels 
of externalizing behavior problems after adjusting for 
their parents’ genotypes, βdirect = 0.23, 95% CI = [0.17, 
0.28], pFDR < .001, rather than before, βpopulation = 0.21, 
95% CI = [0.17, 0.24], pFDR < .001. However, we again 
failed to find evidence that these differences were sub-
stantive (STDDIFF = 1.09, two-sided p = .275).

When moving from the childhood to adolescent 
epoch, we observed a decline in effect sizes for both 
cohorts. Comparing across all twins in the E-Risk 
cohort, we found that twins’ EXT-PGI was associated 
with their externalizing behavior at a level like that of 
the childhood epoch, βpopulation = 0.14, 95% CI = [0.08, 
0.21], pFDR < .001. Compared with the childhood epoch, 
a change in effect size was observed when comparing 
between- versus within-family associations, (βpopulation = 
0.14 vs. βdirect = 0.08), but we again did not find statisti-
cal support for attenuation (STDDIFF = −1.50, two-sided 
p = .133). In contrast, in the MCS cohort there was a 
decline in the association between adolescents’  
EXT-PGI and their externalizing behavior compared 
with childhood, βpopulation = 0.15, 95% CI = [0.11, 0.19], 
pFDR < .001, and a smaller reduction in effect size after 
accounting for their parents’ genotypes, βdirect = 0.13, 
95% CI = [0.08, 0.18], pFDR = .237 (STDDIFF = −1.05, two-
sided p = .293).

Overall, a moderate amount of heterogeneity in 
effect sizes was uncovered when the models were dis-
aggregated by developmental epochs (βpopulation values 
from 0.12 to 0.21), with the largest effect sizes observed 
in the childhood epoch (5–10 years). Despite this, both 
cohorts demonstrated small attenuations in their effect 
sizes when switching to a within-family model, and all 
attenuations were statistically indistinguishable from 
zero, with the largest attenuation occurring in the MCS 
cohort during the childhood epoch.

Parental effects do not explain the 
association between polygenic predictors 
and externalizing behavior problems

Next, we investigated two potential contributors to the 
between-family PGI association: assortative mating and 
parent-specific genetic effects. Assortative mating 
occurs when people are more likely to mate with 
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people who are genotypically and/or phenotypically 
similar. Assortment increases the variance of a trait in 
the population and fosters Gene-environment correla-
tion (rGE), thus inflating the population genetic effect 
of a PGI.

We found little support for the substantive influence 
of assortment in either cohort. In the E-Risk cohort, the 
correlation (r) between twins’ externalizing PGI was .5, 
95% CI = [.43, .57], giving no indication of assortative 
mating (Table S1 in the Supplemental Material). In the 
MCS, the parental mate-pair correlation of the EXT-PGI 
was larger than expected under an assumption of phe-
notypic assortment (rmate-pair = .032 vs. rexpected = .00003); 
however, the mate-pair correlation was not distinguish-
able from zero, 95% CI = −.004, .067, p = .08, leading 
us to conclude that negligible assortment on EXT genet-
ics was present in the MCS (Table S1).

We also compared the relative importance of mater-
nal and paternal genotypes on child externalizing 
behavior (MCS only). By accounting for one parent at 
a time (i.e., partially identifying the direct genetic 
effect), we were able to identify which parental geno-
types contributed more to the indirect genetic pathways 
inflating the population genetic effect. When pooling 
data across epochs, we found that the genotypes of 
fathers accounted for more of the difference between 
the population and direct genetic effects (85% vs. 47% 
for mothers). To contextualize this finding, however, 
we note that the overall amount of change in effect size 
was very small (βpopulation = 0.203 vs. βdirect = 0.198), 
making even trivial variation in the differences between 
parents’ estimates appear large. When assessing models 
within epochs, we found that the greatest distance 
between estimates of parental control was in the child-
hood epoch, with genotypes of mothers and fathers 
accounting for 90% and 40%, respectively, of the dif-
ference between population and direct genetic effects 
(Table S2).

Overall, these results reinforce the possibility that 
the EXT-PGI may be driven primarily by direct genetic 
effects because there is little evidence for assortment 
and little difference in the effect size between fully and 
partially adjusted genetic effects.

Genetic associations with 
externalizing cannot be accounted 
for by measures of parental SES or 
parental externalizing behaviors

We examined the robustness of our results by consider-
ing family-level phenotypes that are known to be asso-
ciated with the intergenerational transmission of 
externalizing behavior: parental SES and parental 

externalizing behavior. Including family-level covariates 
should attenuate estimates of only the population 
genetic effect because the within-family model accounts 
for shared environmental variance by design. We 
observed no change in either cohort in the effect sizes 
of the direct genetic effects but a small change of the 
population effect (e.g., largest difference was 0.08 SDs) 
when including family-level phenotypes, consistent 
with this prediction (Table S3 and Fig. 2c).

Sex differences in genetic associations 
with externalizing were detected only 
in within-family models

The expression and timing of externalizing behavior 
across development is different for boys and girls. It is 
possible that developmental sex differences in external-
izing account for some of the above results. We exam-
ined this possibility by testing for moderation of the 
population and direct genetic effects by the sex of the 
participants.

We recalculated our measure of externalizing behav-
ior in both cohorts by residualizing for age only and 
averaging between and within developmental epochs. 
Next, we reestimated the previous population and 
within-family models and included terms for Sex and 
PGI × Sex (Table S4). The E-Risk cohort contains only 
same-sex twin pairs, meaning that only between-pair 
sex differences could be estimated because sex varied 
only at the family level. Thus, we report results for the 
E-Risk cohort in the Supplemental Material and focus 
on results from the MCS here. Linear models were used 
to test for sex differences in the MCS. Effect coding was 
used for Sex to facilitate interpretation. Thus, the inter-
cepts represent the model grand mean of externalizing 
behavior across the categories in the model (i.e., male, 
female) for someone of average PGI. The main effects 
are interpretable as true main effects and not marginal 
effects. The interaction terms are directly interpretable 
as the difference in the association (i.e., slope) between 
the externalizing PGI and phenotypic externalizing for 
the effect group (i.e., males). Bias-adjusted 95% CIs 
were produced using 1,000 sex-stratified bootstrapped 
samples to ensure stable interaction estimates.

Pooling data across epochs or examining epochs 
individually did not reveal any statistically significant 
interactions with sex in the between-family models 
(Table S4 and Fig. S2). The within-family models identi-
fied statistically significant sex differences in all models 
except the childhood epoch. Across all within-family 
models except the childhood model, the interaction 
term was positive (βs from 0.13 to 0.14; all pFDRs < .05), 
indicating that boys had stronger associations between 
the externalizing PGI and externalizing behaviors than 
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girls in the MCS. Interestingly, it was the childhood 
model that also identified the largest main effect of the 
externalizing PGI across the within-family models, βdirect = 
0.24, 95% CI = [0.19, 0.29], pFDR < .001. The large main 
effect of the externalizing PGI during the childhood 
period may help explain the above finding, wherein 
the direct effect was larger than the population effect 
during the childhood epoch, because both boys and 
girls were experiencing similarly high levels of direct 
genetic effects.

Discussion

When failures in self-control manifest as externalizing 
behavior problems, there can be long-lasting conse-
quences across many life domains. Given the high heri-
tability of externalizing behaviors, researchers have 
been interested in incorporating direct measurements 
of genetic risk alongside other known risk factors to 
improve efforts at early identification/intervention. 
Following a preregistered analytic plan, we used data 
from two longitudinal cohorts from the United Kingdom, 
leveraging molecular genetic data and within-family 
designs to identify direct genetic effects on external-
izing behavior problems in childhood and adolescence. 
Results are consistent with the conclusion that the 
externalizing PGI captures genetic effects that are caus-
ally related to difficulties with self-control in early life.

The externalizing PGI effect size that we observed 
here is comparable to many established environmental 
risk factors and clinical interventions for externalizing 
(Fig. 3; Beelmann et al., 2022; Braga et al., 2018; Paradis 

et al., 2017; Pearson et al., 2022; Piotrowska et al., 2015; 
Pringsheim et al., 2015; Reijntjes et  al., 2011; Reuben 
et al., 2019; Sawyer et al., 2015). For instance, the effect 
sizes observed in the current work are similar in magni-
tude to correlations observed between externalizing 
problems and childhood maltreatment (Braga et  al., 
2018) and maternal smoking during pregnancy (Paradis 
et al., 2017). Note, however, that we present correlations 
with single dimensions of environmental risk and clinical 
interventions; a “poly-environmental index” that aggre-
gated many environmental exposures would likely be 
more strongly correlated with externalizing behavior.

We highlight four key findings. First, we failed to 
find evidence of attenuation when comparing popula-
tion and direct genetic effects of the externalizing PGI 
across cohorts. Our result accords with recent findings 
in which no indirect genetic effects of the externalizing 
PGI (i.e., residual parental genetic effects after account-
ing for offspring genotypes) were detected in a Dutch 
sample of adolescents (Kretschmer et  al., 2022) and 
small indirect effects were detected in a sample of 
American families ascertained for involvement in alco-
hol treatment programs (Kuo et al., 2022). Despite the 
lack of statistical evidence for attenuation, the observed 
differences between the population and direct genetic 
effects was larger in the E-Risk cohort than in the MCS 
cohort. This variation across cohorts might be due to 
differences in the type of family design used (parent-
child trio vs. sibling comparison). Estimates from sib-
ling-comparison models can be biased downward by 
sibling-to-sibling interaction effects (Trejo & Domingue, 
2019). However, other recent simulation studies have 

Methylphenidate Treatment
Behavioral Intervention

Parent Training Programs
Polygenic Index (between-family)

Child Maltreatment
Polygenic Index (within-family)

Maternal Smoking During Pregnancy
Peer Victimization
Built Environment

Lead Exposure
Parental Socioeconomic Status

Pringsheim et al. (2015)
Sawyer et al. (2015)
Beelmann et al. (2022)
Current Study
Braga et al. (2018)
Current Study
Paradis et al. (2017)
Reijntjes et al. (2011)
Pearson et al. (2022)
Reuben et al. (2019)
Piotrowska et al. (2015)

0.0 0.2 0.4

Effect Size (r )

Fig. 3. Comparison of effect sizes (interpretable on the correlation scale) of predictors 
observed in the current study, and those from the literature, on conduct problems. Colors 
represent the polarity of the effect size reported in the original article, with negative values 
(blue) representing reductions in externalizing behavior problems and positive values (red) 
representing increases. Between- and within-family estimates for the externalizing PGI were 
taken from the MCS models with data pooled across epochs. PGI = polygenic index; MCS = 
Millennium Cohort Study.
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demonstrated similar performance of the sibling- 
comparison and parent–child trio designs in the  
presence of a variety of environmental influences 
(Demange et  al., 2022), suggesting the role of other 
factors, such as differences in measurements or sam-
pling strategies.

Second, we observed heterogeneity in effect sizes 
when data were disaggregated by developmental 
epochs. This result emphasizes the dynamic nature of 
externalizing behavior and highlights the importance 
of genetic factors early in development. The early peak 
in effect sizes during childhood and decline in adoles-
cence may be attributable to the increasing heritability 
of specific forms of externalizing behavior problems 
(e.g., alcohol use) above and beyond latent external-
izing risk that has been observed later in development 
(Kendler et al., 2011; Meyers et al., 2014). Despite the 
variation in epoch-specific levels of genetic associa-
tions, the differences between population and direct 
genetic effects were consistently small within epochs, 
suggesting that the level of nondirect genetic influence 
remains low regardless of age.

Third, statistical adjustment for family-level variables 
(i.e., parental SES and externalizing behavior problems) 
had little impact on population genetic effects, suggest-
ing that the externalizing PGI is not redundant with 
common social-science variables. Moreover, we 
observed limited evidence for genetic assortment 
among parents. Overall, we observed a small role of 
the shared family-level environment in measured 
genetic associations with externalizing behavior, a 
result that supports twin-based estimates of the shared 
environment (approximately 15%; Burt, 2009). Other 
phenotypes of interest to social and clinical scientists 
do not always follow this pattern. Educational attain-
ment, for instance, has larger shared environmental 
variances (approximately 30% in twin studies; 
Silventoinen et  al., 2020) and correspondingly larger 
attenuations in the population genetic effect size 
(approximately 50%; Okbay et  al., 2022) when esti-
mated using genomic data and within-family designs 
as done here.

Fourth, sex differences (i.e., MCS only) in polygenic 
associations were dependent on the model used. The 
between-family models did not detect any sex differ-
ences, whereas results from the within-family models 
indicated larger direct genetic effects for boys com-
pared with girls. We emphasize this last finding because 
it offers a potential explanation for the general dearth 
of sex differences observed in research on PGIs (Zhu 
et al., 2023). Although results will vary depending on 
the nature of the PGI of interest, it may be that the 
environmental effects inherent in population genetic 
associations are sufficient to obfuscate sex differences 

and that within-family designs are needed to identify 
these differences.

This study has several limitations. First, we maxi-
mized comparability across epochs by using measures 
of conduct problems assessed consistently over time; 
however, we know that the expression of behaviors in 
the externalizing spectrum can be highly varied in early 
life. It is likely that our approach was not able to cap-
ture the full scope of conduct behaviors as they began 
to be expressed in the study samples (i.e., because of 
heterotypic continuity). Likewise, our measurements of 
parental externalizing behavior and SES were not com-
prehensive. We might have observed a greater change 
in the population genetic effect when including paren-
tal covariates if our study included more comprehensive 
and reliable measures of these parental phenotypes 
(Westfall & Yarkoni, 2016).

Another limitation concerns the possibility of dif-
ferential attrition in our samples resulting from being 
restricted to only those participants who had complete 
data on key study variables, as well as having a com-
plete family structure (i.e., both siblings in the E-Risk 
and offspring with both parents in the MCS). This con-
cern is less relevant for the E-Risk sample, in which 
retention rates were high (93% of the original sample 
participated in the most recent wave of data collection). 
Comparing the analytic sample from the MCS (N = 
2,824) to the participants with partial data from the 
relevant waves (N = 5,377; Table S5 in the Supplemental 
Material), we found that the analytic sample was higher 
on measures of parental externalizing and SES and 
lower on genotypic and phenotypic externalizing, and 
these differences were statistically significant (all ps < 
.001). However, effect sizes (Cohen’s d) of these differ-
ences were small (i.e., ranging from 0.29 to 0.38), 
except for parental SES, which was a medium-sized 
effect (|d| = 0.62; Fig. S3). Considering these differ-
ences, we cannot rule out the possibility that selection 
may have influenced some of the results reported here.

Third, we relied on a PGI that was developed in 
adults and used phenotypes that are rare in pediatric 
samples (e.g., problematic alcohol use). A PGI based 
on genetic discovery studies in children might capture 
more of the genetic signal relevant to child and ado-
lescent externalizing problems. However, previous 
research has suggested that the genetic factors contrib-
uting to latent externalizing are highly stable across 
development and into adulthood. That is, the specific 
genetic basis for childhood externalizing behavior 
problems remains stable as children become adults, 
although its expression (through specific behaviors) 
will change (Barr & Dick, 2020; Hatoum et al., 2018). 
These results support our use of the externalizing PGI 
in a pediatric sample.
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Fourth, our analysis relied solely on British families 
whose genotypes are most similar to reference panels 
of people sampled from Europe versus other places in 
the world, and thus our findings are not expected to 
be broadly generalizable to children with different 
genomic ancestry patterns. Focusing on European-
ancestry children was appropriate for the current analy-
sis because the GWAS of externalizing behavior was 
conducted in European-ancestry individuals, and PGIs 
(particularly those for complex behavioral traits) have 
low portability across ancestry groups (Martin et  al., 
2019; Privé et  al., 2022). For instance, it has been 
observed that the PGI for externalizing behavior is less 
predictive for African- than European-ancestry individu-
als in an American cohort (Kuo et  al., 2021, 2022). 
Without a PGI that performs comparably in non- 
European ancestries, application of the current exter-
nalizing PGI to other ancestry groups is unwarranted.

Despite these limitations, we believe that DNA-based 
measures may be useful for efforts aimed at identifying 
and supporting at-risk youths before low self-control 
develops into externalizing behaviors. This line of 
research would benefit from further replication in better 
powered samples, especially those outside of the United 
Kingdom, which would also be informative regarding 
the cultural specificity of our results. It would also 
benefit from work that more comprehensively examines 
emotional and behavioral problems across development 
because the genetic variants included in the external-
izing PGI are likely not specifically associated with only 
self-control problems. Nonetheless, we have provided 
preliminary evidence that a PGI trained on adult exter-
nalizing behaviors could predict childhood-onset exter-
nalizing behavior problems in two nonclinical samples, 
even when using a rigorous design-based control for 
between-family environmental stratification. Because 
our analysis identified effect sizes comparable to estab-
lished risk factors such as family SES or lead exposure, 
we believe that DNA-based measures may provide 
incremental value to current risk-assessment tools.
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